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Abstract 
In different obstacle environments, the traditional A* algorithm may encounter the 
following issues during the path planning process: significant differences in efficiency 
among different heuristic functions, excessive number of search nodes, and non-smooth 
paths. This paper first combines the distance from a point to a line with the Euclidean 
distance, it is then integrated with a priority search strategy to improve search efficiency. 
Additionally, this paper proposes a turning point evaluation and node optimization 
algorithm to optimize the path. The result of experiments have shown that improved 
algorithm can stably reduce the number of traversed nodes, shortens the path length, 
and generates smoother planned paths, enabling the mobile robot to reach the 
destination efficiently and safely. 
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1. Introduction 

Navigation, as one of the important functions of mobile robots, has been extensively studied by 
researchers. Mobile robot navigation can be divided into four major steps: environmental 
perception, self-localization, path planning, and motion control. Path planning can be broadly 
divided into global path planning and local path planning. Global path planning focuses on 
obstacles in a static environment and involves various algorithms such as A* algorithm [1, 2], 
Dijkstra algorithm [3], Ant Colony Optimization(ACO) [4], Genetic Algorithm (GA) [5], and more. 
The A* algorithm has become one of the classic heuristic search algorithms due to its high 
planning efficiency. In A* algorithm, the robot's direction is artificially limited to fixed angles, 
resulting in paths with excessive turning points and redundant nodes. Researchers have 
proposed path planning algorithms that are not restricted by angles to overcome limitations on 
robot turning angles, including the theta* algorithm [6], Rapidly-exploring Random Tree (RRT) 
algorithm [7], and D* Lite algorithm [8]. To improve the search efficiency of A* algorithm, in 
paper [9, 10], they made improvements to the heuristic function. 
In order to reduce the number of turning points and improve the smoothness of the path, other 
algorithms or mechanisms can be introduced into path planning to improve path smoothness 
[11]. For example, by incorporating an angle determination mechanism to effectively remove 
redundant nodes in the path [12]. Additionally, integrating collision cones methods [13], as well 
as combining B splines and Bezier curves methods [14, 15]. Although these algorithms can 
effectively address the path planning requirements of mobile robots, when dealing with 
different environments, they exhibit issues such as slow convergence speed, a high number of 
search nodes, excessive turning points, and non-smooth paths. 
To sum up, we propose the improved algorithm to address the shortcomings mentioned in the 
literature. We propose an algorithm based on priority search strategy. By combining the 
distance from a point to a line and the Euclidean distance as heuristics, and we propose a 
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turning point evaluation function. By evaluating the turning points in the path and considering 
them as key points, we regenerate the path, thereby reducing the number of turning points in 
the path. 

2. Path Planning based on A* Algorithm 

2.1. Heuristic Function 
The cost function of the improved A* algorithm consists of the actual cost function and the 
heuristic function, the cost function of the A* algorithm is described as: 
 

 ( ) ( ) ( )f n g n h n                                                                 (1) 
 

Where g(n) is the actual cost from the starting point to the current node, and h(n) is the 
estimated cost from the current node to the goal. 
The selection of a heuristic function determines the search efficiency of the algorithm. When 

( ) ( )h n g n , the number of traversed nodes is less, but the planned path may be suboptimal. 
When ( ) ( )h n g n , the algorithm can find the optimal path, but it may search through a larger 
number of nodes. When ( ) ( )h n g n , the search efficiency is highest and the results are best. 
The presence of obstacles leads to an imbalance between ( )h n  and ( )g n . In paper [9], they 
proposed a heuristic function that combines point to line distance with Euclidean distance, as 
shown in the following formula. 
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Where 1( )h n  represents the distance from point ( , )n n nP x y  to the line L , ( , , )a b c  is the 

parameter expression of the line L  formed by the starting point and the ending point. 2 ( )h n  is 

the Euclidean distance from point nP  to the ending point ( , )n N NP x y . 1d  and 2d  are coefficients. 

2.2. Priority search strategy 
In a grid map, the A* algorithm typically sets the search direction to either 8 or 4 directions. 
During the path search, calculating the cost in a fixed direction each time leads to an issue of 
excessive search nodes. To improve search efficiency, a priority search strategy can be 
implemented. By prioritizing the expansion of the search from the start point towards the goal. 
 

 
(a)Search direction of node             (b) Grid map 

Figure 1. Node search process 
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During the path search, calculating the cost in a fixed direction each time leads to an issue of 
excessive search nodes. To improve search efficiency, a priority search strategy can be 
implemented. 
 

Table 1. Calculation of cost for neighborhood nodes 
Coordinates ( )F n  ( )G n  ( )H n  

Increment 

1(3,3)N  
23.9606 1.4142 22.5163 0.5786 

2 (4,3)N  23.2255 1.0000 22.2255 -0.1265 

3 (5,3)N  23.3710 1.4142 21.9586 0.0190 

4 (3,2)N  24.6146 1.0000 23.6146 1.2626 

5 (5,2)N  24.0986 1.4142 23.0986 0.7466 

6 (3,1)N  26.1479 1.0000 24.7337 2.7959 

7 (4,1)N  25.4851 1.4142 24.4851 2.1331 

8 (5,1)N  25.6739 1.0000 24.2596 2.3219 

(4,2)cN  23.3520 0.0000 23.3520 0.0000 

 
The direction of goal can be inferred from the cost of nodes. As shown in Figure 1, the goal point 
is located at the upper right of the start point. The green node represents the start point, and 
the red node represents the goal point. According to the formula (1) and (2), the cost of eight 
neighboring nodes of the start point can be calculated, as shown in the Table 1. By subtracting 
the cost of current node cN  from the cost of the neighboring nodes, the cost increment for that 
direction can be obtained. By limiting the cost increment of the nodes, the algorithm can 
prioritize traversing nodes with lower cost. When the increment of the nodes is limited to 0.5, 

2N  and 3N  will be searched firstly. Only when the search along the 2N  and 3N  directions is 
interrupted, will the other directions of the nodes be searched. 
As shown in Figure 1(a), each node represents a direction. The values in each direction 
represent the cost of that direction. If the target is located above the node, the priority expand 
directions are upper, upper left and upper right. If the search is interrupted during this process, 
other directions will be searched. 
The search is prioritized towards directions with smaller costs of child nodes. It does not aim 
to improve search speed by reducing search directions. Instead, during the traversal of child 
nodes, the ones with higher costs are marked and placed in the CloseList. When the search is 
interrupted, some marked nodes with smaller costs are taken from the CloseList to resume the 
search. The following is a flowchart for the priority search algorithm,as shown in Figure 2. 
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Figure 2. The flowchart of priority search strategy 

 
Commonly used heuristic functions include Euclidean distance, Manhattan distance, Diagnoal 
distance and Chebyshev distance. The efficiency of the search varies greatly depending on the 
specific characteristics of obstacle maps. In Figure 3, which shows the search performance 
between different heuristic functions. Considering the actual size of the robot, when conducting 
global path planning, it is necessary to plan a path that is far from obstacles to reduce the chance 
of collision during local path planning. Therefore, the obstacles in the map need to be inflated. 
The green area represents blank space, the purple area represents the inflated region, the black 
area represents obstacles, and the white area represents unknown regions. The light blue area 
represents the nodes traversed by the calculation once, and the dark blue area represents the 
nodes traversed many times. 
From the Figure 3, it can be seen that by implementing a priority search strategy, the search 
efficiency has been improved by approximately -9%, 67.3%, 3.9% respectively, compared to 
the case of using the combination of the distance from a point to a line and the Euclidean 
distance. In different maps, the number of search nodes is more stable and fewer than other 
heuristic distance, resulting in an overall improvement of 62.2% in search efficiency. 
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Figure 3. Performance of different heuristic functions 
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3. Path Planning based on A* Algorithm 

Due to the restrictions imposed by fixed turning angles, the grid path in the planned path is 
suboptimal and contains unnecessary nodes. To tackle this problem, this section presents a 
novel algorithm for optimizing the path. The path generated based on global path planning is 

represented by 
1

( )
n

ipath P , where 1P  to nP  are the nodes of the path information. 

In the grid map , The continuity of nodes can be determined using the following formula. 
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If formula 2 1 2 1 1 23 2& &2P P PP PP PP 
   

 holds, it is considered a continuous point; otherwise, it 
is considered a turning point. By repeating this process, we can identify all the turning points 
along the path and designate them as key points. This allows us to collect all the turning points 
in the path, as illustrated in Figure 4. 
 

 

Figure 4. Turning point evaluation and path optimization 
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Figure 5. Performance under different algorithms 
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After obtaining all the turning points in the path, it is necessary to determine whether 
optimization is possible between different turning points. Sample points should be taken based 
on the distance between the turning points, and these sample points should be checked to see 
if they pass through or are close to obstacles. If these points are not close to obstacles, the path 
should be optimized and regenerate a new path. Otherwise, the original path information 
should be retained. 

4. Experimental Comparison and Analysis 

To validate the algorithm's superiority, we performed experimental comparisons using 
traditional A* algorithm, Dijkstra algorithm, and bidirectional A* algorithm on three distinct 
maps. The number of search nodes was statistically analyzed and presented in Figure 5. Both 
the traditional A* algorithm and bidirectional A* algorithm employed the Manhattan distance 
as their heuristic function. 
 

Table 2. The specific performance of different algorithms 
Algorithm Nodes Length of path Time(s) Turning 
Dijkstra A* 37618 306 0.885966 18 

Bidirection A* 23902 308 0.521772 23 
Traditional A* 12108 306 0.227782 18 
Improved A* 10124 282 0.214671 14 

 
We separately recorded the number of search nodes, path length, time, and the number of 
turnings. The following data represents the average values across three maps.The comparison 
between path length and the number of turning points under different algorithms is shown in 
Figure \ref{fig6}. The specific performance comparison of different algorithms is shown in 
Table 2. Analysis of the data reveals that the Dijkstra algorithm, traditional A* algorithm, and 
improved A* algorithm yield superior global paths. 
Analysis of the data reveals that the Dijkstra algorithm, traditional A* algorithm, and improved 
A* algorithm yield superior global paths. However, the Dijkstra algorithm, as a traversal 
algorithm, requires a large number of search nodes and thus requires more time. In contrast to 
the traditional A* algorithm, the bidirectional A* algorithm demonstrates an increased number 
of search nodes, longer paths, and more turning points. Conversely, the improved A* algorithm 
decreases the number of search nodes by 16.4% and achieves an average path length reduction 
of 7.8%. It also reduces search time by 5.8% and decreases the number of turning points in the 
path by 28.6%. 

5. Conclusion 

This paper proposes a new indoor mobile robot path planning method. Based on the A* 
algorithm, this method effectively reduces the number of traversed nodes, decreases the 
number of turning points in the path, and makes the path smoother. Moreover, for scenarios 
where obstacles obstruct the global path, it ensures that the robot can safely reach the target 
and avoids getting stuck in local optimal solutions. Experimental and comparative results 
validate the effectiveness of the proposed algorithm. Research direction in the future include 
multi-robot collaboration, which can greatly improve the efficiency of robots. By utilizing high-
precision sensors and sensor fusion techniques, the navigation and localization of robots can 
be more accurate, enabling them to timely avoid obstacles. However, as robots encounter 
increasingly complex environments, the importance of three-dimensional path planning is 
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being emphasized. Research in this field is becoming more comprehensive and sophisticated, 
with the goal of meeting a wide range of needs. 
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