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Abstract 

Accurate prediction of production capacity for tight gas fractured wells is an important 
prerequisite for making informed development decisions. Addressing the limitations of 
traditional methods in terms of assumptions and lack of historical data, as well as the 
complex nonlinear relationship between geological and engineering parameters, this 
paper takes the Sulige tight gas field in the Ordos Basin as an example. It utilizes Pearson 
correlation analysis to determine the dominant factors and weights that influence the 
post-fracturing production of 253 tight gas vertical wells in the Sulige area. Then, 
combining geological and engineering parameters, a production capacity prediction 
model for tight gas vertical wells is established based on the BP neural network 
algorithm. The results show that the average error of the predicted production capacity 
of tight gas vertical wells based on the established model using production well data 
from the Sulige area is 11.47%. This model enables accurate and efficient prediction of 
post-fracturing production capacity, providing important scientific basis for the 
economic development of tight gas fields. 
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1. Introduction 

The Sulige gas field in the Ordos Basin is the largest onshore gas field in China, characterized 
by "four lows": low porosity, low pressure, low permeability, and low abundance in tight 
sandstone gas reservoirs. Hydraulic fracturing is an effective method to enhance the production 
of tight sandstone gas reservoirs, and production capacity prediction is a key scientific issue for 
achieving economic development of tight gas reservoirs. Accurate prediction of production 
capacity for vertically drilled tight gas wells after hydraulic fracturing is an important 
prerequisite for making informed development decisions, and it holds significant importance 
for the exploration and development of the Sulige gas field in the Ordos Basin. Currently, the 
methods for evaluating production capacity in low-permeability tight gas reservoirs, both 
domestically and internationally, mainly fall into two categories: analytical models based on 
complex mathematical formulas derived from production equations, and numerical models 
that utilize production dynamic data for capacity prediction. These methods are primarily 
based on theoretical models, requiring idealized assumptions and parameters that are not 
easily obtainable. Moreover, during the early stage of exploration and production testing, there 
is a lack of historical fitting data, making it impractical to apply theoretical models for 
production prediction. Additionally, due to the comprehensive influence of geological and 
engineering parameters, there exists a complex nonlinear relationship between geological 
parameters, fracturing engineering parameters, and production of tight gas vertical wells. 
Conventional linear regression methods have limited accuracy in predicting production 
capacity.  
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While simple models such as linear regression often have better interpretability and are easier 
to understand in terms of their internal workings, their predictive capabilities are often limited 
and unable to model the inherent complexity within the dataset, such as feature interactions. 
In contrast, black-box models such as neural networks typically exhibit higher accuracy and 
stronger model generalization capabilities. In recent years, some scholars have utilized 
artificial neural networks to address parameter prediction problems that arise from the 
complexities and uncertainties of actual oilfield production processes. In the development of 
tight gas fields, tackling the nonlinear relationship between numerous geological and 
engineering parameters and tight gas well production is one of the significant challenges of the 
BP neural network. In this paper, we first calculate the weights of geological and engineering 
factors that affect post-fracturing production capacity using Pearson correlation analysis. Then, 
by employing the BP neural network algorithm and leveraging data mining techniques, we 
directly incorporate geological and engineering parameters, surpassing the limitations of 
traditional theoretical models, to establish a production capacity prediction model for tight gas 
vertical wells in the Sulige area, aiming to improve the efficiency and accuracy of capacity 
prediction. 

2. Data Acquisition and Preprocessing 

2.1. Data Source 

The collected raw data consists of 287 fractured vertical wells in the Sulige gas field. The 
parameters influencing production capacity include porosity, permeability, gas saturation, 
effective thickness, average total hydrocarbon, reservoir pressure, and six geological 
parameters. Additionally, there are six fracturing construction parameters: flowback rate, 
pumping rate, proppant concentration, total fluid volume, total proppant volume, and nitrogen 
usage. The target parameter is the cumulative gas production after one year of fracturing. 

2.2. Data Preprocessing 

The data used in this study is derived from the actual production of the Sulige gas field. Due to 
variations in data recording among different blocks and the presence of missing or outlier 
values in the actual production data, direct training is not feasible. Therefore, prior to using 
machine learning to predict post-fracturing production capacity, data preprocessing operations, 
such as data cleaning, are necessary to achieve higher prediction accuracy. 

Currently, there are two main approaches for handling missing values: directly deleting 
samples or features with missing values or filling in the missing values. In this study, features 
with missing values that account for more than half of the original data are removed. For 
features such as porosity, reservoir pressure, and gas saturation that exhibit varying degrees of 
missing values, features with missing values that account for more than half of the original data 
are removed, while for other geological parameters with missing values, the corresponding 
feature means are used for imputation. 

The presence of outlier values in the dataset can also affect model prediction accuracy. In this 
study, an outlier detection method based on box plots is employed. In a box plot, outliers are 
typically considered as values greater than the upper quartile plus 1.5 times the interquartile 
range or values less than the lower quartile minus 1.5 times the interquartile range. The upper 
quartile represents the value below which 75% of the data falls, while the lower quartile 
represents the value above which 25% of the data falls. The interquartile range is the difference 
between the upper quartile and the lower quartile. 

After handling outlier and missing values, a total of 253 usable samples are obtained to 
establish the dataset for predicting post-fracturing production capacity in the Sulige tight gas 
field. 
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3. Identification of Post-Fracturing Production Capacity Influencing 
Factors Based on Pearson Correlation Analysis 

3.1. Pearson Correlation Analysis 

Pearson correlation analysis is performed on the determined q influencing factors. Pearson 
correlation is used to assess the strength of the linear relationship between two continuous 
variables. Its purpose is to remove parameters that exhibit high linear correlation with each 
other and reduce the dimensionality of the data. Let X and Y represent the sample data, and the 
calculation formula for Pearson correlation is as follows: 

                                                             (1) 

After calculating the Pearson correlation coefficient matrix, a correlation matrix heatmap can 
be created to visualize the magnitude of the correlation coefficients between the parameters. 

 
Figure 2.1 Heatmap of Correlation Coefficients 

 

Table 2.1 Correlation Coefficients between Factors and Production Capacity 

Parameters Coefficient Parameters Coefficient 

Porosity 0.756 Permeability 0.453 

Gas Saturation 0.820 Effective Thickness 0.661 

Average Total Hydrocarbon 0.734 Reservoir Pressure 0.314 

Return Ratio 0.597 Displacement 0.379 

Sand Ratio 0.612 Total Fluid Volume 0.624 

Total Sand Volume 0.791 Liquid Nitrogen Usage 0.479 

3.2. Model Indicator Selection Based on Embedded Methods 

Embedded methods are a technique that allows the algorithm to autonomously determine 
which indicators to select, while simultaneously training the model. As the selected indicators 
become optimal, the model's accuracy improves. To identify the optimal indicators, the Support 
Vector Machine (SVM) algorithm was employed. The sorted parameters were fed into the SVM 
model to predict the post-fracturing production capacity. 

The impact of different numbers of indicators on the production capacity prediction results is 
illustrated in the figure below: 

( )

( ) ( )

,
XY

Cov X Y

D X D Y
 =



Scientific Journal of Intelligent Systems Research                                                                                        Volume 5 Issue 5, 2023 

ISSN: 2664-9640                

173 

 
Figure 2.2 Relationship Between Number of Indicators and Model Correlation Coefficient 

From the graph, it can be observed that the model's correlation coefficient is highest when the 
number of indicators is 8. Based on the above analysis, the following indicators were selected 
as inputs for the prediction model: gas saturation, total proppant volume, porosity, average 
total hydrocarbon, effective thickness, total fluid volume, proppant-to-fluid ratio, and flowback 
rate. 

4. Construction of Post-Fracturing Production Capacity Prediction Model 
Based on BP Neural Network 

4.1. Basic Principles 

The BP (Backpropagation) neural network is a self-learning method used for nonlinear fitting 
and modeling. It automatically adapts and determines the connection weights of each neuron 
based on the input training samples. After multiple training iterations, the neural network's 
weight values store the fitting information extracted from the sample dataset. Finally, by 
performing calculations using the input data and weights, the desired prediction values can be 
obtained. 

4.2. Model Establishment 

For the production capacity prediction model, a classic 3-layer neural network model was 
adopted. The 8 geological and engineering parameters related to production capacity were 
chosen as input parameters, resulting in 8 nodes in the input layer. The post-fracturing 
cumulative gas production after one year was selected as the output parameter, hence the 
output layer was set to have 1 node. Through multiple experiments, the number of nodes in the 
hidden layer was determined to be 16. The final topology of the constructed network is 
illustrated in Figure 3.1. 

 
Figure 3.1 Structure of the BP Neural Network Algorithm 

During the training process, it is necessary to set appropriate learning rate and iteration count. 
The learning rate determines the step size of parameter updates and should be chosen based 
on the specific situation. A learning rate that is too large may prevent the model from 
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converging, while a learning rate that is too small may result in slow convergence. The iteration 
count represents the number of iterations in the training process and needs to be appropriately 
chosen to ensure accuracy while avoiding overfitting. Based on the model debugging 
calculations and experience, the maximum training count for this model was set to 10,000 
iterations, with a desired accuracy of 0.00001. Considering the precision and stability 
requirements of the model, a learning rate of 0.05 was set. 

In summary, a classical three-layer BP neural network model was selected. By combining the 
geological, engineering parameters, and production data of the already producing wells in the 
Sulige area, a production capacity prediction model for tight gas fractured vertical wells was 
constructed. By predicting the training data, the model achieved a correlation coefficient of 
0.877 and a root mean square error of 2.348, indicating high training accuracy and good 
capability for production capacity prediction. The model was further validated using data from 
12 wells, as shown in Figure 3.2. 

 
Figure 3.2 Training Data Error Comparison 

4.3. Model Application 

To further validate the applicability of the shale gas horizontal well volume fracturing 
production prediction model, the geological and engineering parameters of Well A, Well B, and 
Well C in the Sulige area were inputted into the software to conduct production prediction tests. 
The predicted results were then compared with the actual field-measured data, as shown in 
Table 3.1. 

Table 3.1 Comparison of Predicted Data and Actual Data 

Well No Predicted Results 
(104m3) 

Actual Data (104m3) Error (%) 

A 896 981 8.66 

B 1179 1054 11.86 

C 712 827 13.91 

Average Error 11.47 

From Table 3.1, it can be observed that the maximum relative error of the trained model for 
predicting production in tight gas fractured vertical wells is 13.91%, and the average error is 
11.47%. This indicates that the production prediction model based on BP neural network can 
effectively capture the underlying patterns and relationships between the test production and 
various influencing factors. Moreover, the model exhibits a relatively small error rate in terms 
of prediction accuracy, providing an efficient, feasible, and reasonably accurate method for 
predicting production in tight fracturing operations. 
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5. Conclusion 

(1) A classical three-layer BP neural network model was selected, and based on the factors 
affecting tight gas production, a production prediction model was established with seven 
geological and engineering parameters including gas saturation, total proppant volume, 
porosity, average total hydrocarbon, effective thickness, etc., as input layers, and one-year 
cumulative gas production as the output layer. 

(2) By utilizing actual data from 253 fractured wells in the Sulige area as training samples, a BP 
neural network model was constructed to predict production in tight gas vertical wells with 
high accuracy. The model's generalization ability was validated using data from three actual 
wells, resulting in a maximum relative error of 13.91% and an average error of 11.47%. The 
model demonstrates flexibility in operation and high prediction accuracy. This data mining-
based analytical approach provides a new perspective for production prediction in the Sulige 
area, improving the efficiency of production forecasting in gas wells. 
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