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Abstract 

Adversarial attacks pose a serious threat to the security and reliability of machine 
learning models, particularly in the context of white-box attacks where the attacker has 
full knowledge of the model architecture and parameters. Adversarial training with the 
Fast gradient sign method or the projected gradient descent attacks has been shown to 
improve the robustness of models against specific types of attacks , particularly white-
box attacks. In this paper, we propose a hybrid FGSM-PGD method for adversarial 
training that combines the strengths of FGSM and PGD attacks to improve the robustness 
of deep learning models against a wide range of white-box attacks. We evaluate the 
effectiveness of our proposed method on three popular datasets: Fashion MNIST, SVHN, 
and CIFAR10, against four white-box attacks: FGSM, PGD, IFGSM, and MIFGSM. Our 
experimental results demonstrate that our proposed method achieves state-of-the-art 
performance in terms of robustness against white-box attacks, while maintaining good 
accuracy on the clean data. These findings highlight the potential of our proposed 
method as an effective defense against white-box attacks on machine learning models.. 
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1. Introduction 

While deep learning models have excelled at a variety of tasks, their vulnerability to adversarial 
attacks has led some to question their reliability and security. Adversarial attacks describe the 
purposeful alteration of input data to make the model provide false results. Attacks like this can 
seriously harm independent systems, misclassify photos, and jeopardize human safety. Several 
adversarial attack types, such as white-box and black-box attacks, have been suggested. In 
white-box attacks, the attacker is fully aware of the model parameters and can change the input 
data to force the model to provide false results. In contrast, the attacker in a black-box attack 
has little or no knowledge of the model parameters and must modify the input data by trial and 
error or other means.  

To address this issue, researchers have proposed adversarial training methods that aim to 
improve the model’s robustness against adversarial attacks. Adversarial training involves 
augmenting the training dataset with adversarial examples, which are generated by perturbing 
the input data in a way that minimally affects the output of the model. The idea is that by 
training on these adversarial examples, the model can learn to be more robust to similar attacks. 
Attacks using the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) are 
two popular techniques for producing adversarial examples. PGD iteratively perturbs the input 
data with a small step size in the direction that maximizes the loss function subject to a 
constraint on the Lp-norm of the perturbation, as opposed to FGSM, which generates 
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adversarial examples by perturbing the input data in the direction of the gradient of the loss 
function for the input. Despite the effectiveness of adversarial training with FGSM or PGD, 
existing methods have limitations. For instance, models trained using only FGSM or PGD attacks 
may be robust to specific types of attacks but may not generalize well to other types of attacks. 
Moreover, adversarial training with PGD is computationally expensive and may not scale well 
to large datasets. To address these limitations, we propose a new hybrid adversarial training 
method that combines the strengths of FGSM and PGD attacks. Our approach involves an 
alternating algorithm that generates adversarial examples using both FGSM and PGD attacks, 
allowing the model to learn both local and global adversarial perturbations. We evaluate our 
method on three popular datasets Fashion MNIST, SVHN, and CIFAR10 against four white-box 
attacks: FGSM, PGD, IFGSM, and MIFGSM.  

Our experimental results show that our hybrid FGSM-PGD method outperforms models trained 
using only FGSM or PGD attacks, achieving higher accuracy and robustness against a variety of 
white box attacks. The following are the contributions of this paper: 

 • We suggest a novel hybrid training method that combines the strengths of FGSM and PGD 
attacks to improve the robustness of deep learning models against a wide range of adversarial 
attacks. 

 • We test our approach using three widely used datasets against four white-box attacks and 
show that it outperforms existing methods in terms of accuracy and robustness.  

• Our proposed method is practical, effective, and can be easily incorporated into existing 
adversarial training frameworks, providing a means to enhance the reliability of deep learning 
systems in real-world applications.  

Overall, our findings suggest that our proposed method provides a promising approach for 
improving the robustness of deep learning models against adversarial attacks 

2. Related Work 

In this section, we review related work on adversarial attacks and defenses. 

2.1. Adversarial Attacks 

An adversarial attack is a method or way to generate adversarial examples. Thus, an adversarial 
example is an input to a machine learning model that is designed to cause a system to make a 
mistake in its predictions despite resembling a valid input to a human. In white box attacks the 
attacker has access to the model’s parameters and architecture, while in black box attacks, the 
attacker has no access to the model’s parameters and architecture. The most commonly used 
adversarial attacks are based on the FGSM and PGD algorithms. FGSM is a fast and simple 
method that generates adversarial examples by perturbing the input data in the direction of the 
gradient of the loss function for the input. PGD is a more iterative and computationally 
expensive method that generates adversarial examples by taking multiple small steps in the 
direction of the gradient of the loss function for the input.  

The FGSM and PGD attacks can be represented mathematically as follows:  

FGSM: xadv = x + ε · sign(∇xJ(θ, x, y))                                            (1) 

PGD: xt+1 = clipx+ε(xt + α · sign(∇xJ(θ, xt, y)))                                    (2) 

where x denotes the original input, xadv denotes the adversarial example, J(θ, x, y) is the 
model’s loss function, θ is the model’s parameters, y is the ground truth label, ε is the maximum 
allowed perturbation, α is the step size, and clip is a function that clips the values of xt + 
α · sign(∇xJ(θ, xt, y)) to be within the range of x ± ε.  
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Additional adversarial attack types include the iterative FGSM (IFGSM) attack, which is similar 
to PGD but only requires one step each iteration, and the momentum iterative FGSM (MI-FGSM) 
attack, which adds a momentum term to the gradient updates to speed convergence. 

2.2. Adversarial Defenses 

The purpose of adversarial defenses is to improvethe robustness of deep learning models to 
adversarial attacks . There are various types of adversarial defenses, including: 

2.2.1. Adversarial training: 

The robustness of deep learning models against adversarial attacks is frequently increased by 
adversarial training. The fundamental concept is to create adversarial examples during training 
and include them in the training data to help the model in learning to be robust to adversarial 
perturbations. For instance, Madry et al. (2018) [1] proposed an effective adversarial training 
method based on the PGD attack, but its practical use is constrained by the PGD attack’s high 
computational cost. By employing the FGSM attack or FGSM and PGD combination, further 
research has attempted to lower the computing cost of adversarial training. To maximize 
performance in terms of accuracy and robustness, Wang et al. (2020) proposed an approach 
that combines PGD with a feature denoising methodology. 

2.2.2. Adversarial detection and rejection: 

Adversarial detection and rejection methods, which aim to identify and eliminate 
confrontational examples from the input before feeding it to the model, are further strategies 
for thwarting adversarial attacks. The feature squeezing defense is one such technique that 
reduces the input space of the model by combining several colors into a single color. Another 
method is to utilize randomized smoothing, which makes the decision boundaries smoother by 
adding noise to the input.  

Recent studies, however, have revealed that many of these defense strategies, are ineffective 
against more powerful attacks (MI-FGSM). There is an increasing interest in creating stronger 
defenses that can survive these attacks.  

To improve the robustness of deep learning models against a variety of adversarial attacks, we 
propose in this paper a hybrid adversarial training strategy that combines FGSM and PGD 
attacks. In terms of accuracy and robustness, our method outperforms other approaches, 
proving the value of the suggested strategy. 

3. Methodology 

3.1. Overview of Hybrid FGSM-PGD:  

Our proposed hybrid FGSM-PGD method involves three key steps to generate adversarial 
examples in order to improve the robustness of deep neural networks.  

First, we generate n FGSM adversarial examples with a perturbation magnitude of εf gsm. 
Second, we generate m PGD adversarial examples with a perturbation magnitude of εpgd and a 
maximum of k iterations. Finally, we combine these adversarial examples with the original 
clean data to form a new dataset with n + m adversarial examples and N clean examples.  

We then train the deep neural network on this augmented dataset using a standard back-
propagation algorithm and the standard cross-entropy loss function. The hybrid approach of 
using both FGSM and PGD methods helps to mitigate the limitations of each approach and 
improve the overall robustness of the model.  

By combining FGSM and PGD, we can generate a larger and diverse set of adversarial examples, 
which can lead to improved performance and reduced overfitting. Additionally, using both 
methods can reduce the computational overhead required for training, as generating a large 
number of PGD adversarial examples can be computationally expensive. Overall, our proposed 
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hybrid FGSM-PGD method can help to improve the robustness and efficiency of deep neural 
networks in various applications. 

 

 
 

Figure 1: Convolutional neural network architecture for a classification problem. The network 
comprises of several layers, including two convolutional layers with ReLU activation and max 
pooling, followed by a flatten layer, a fully connected layer, and an output layer with softmax 

activation. This architecture is commonly used for image classification tasks in computer 
vision. 

3.2. Optimization Process:  

The optimization process for the hybrid FGSM-PGD method can be formulated as:  

minimize θ E(x, y) ∼ D [ max δ ∈ SL(fθ (x+δ), y) ]                         (3) 

where θ are the parameters of the model, D is the data distribution, S is the set of allowed 
perturbations, δ is the adversarial perturbation, fθ is the model with parameters θ, L is the loss 
function, and (x, y) is a training example.  

 

The adversarial examples are generated by the following process:  

 

FGSM: δFGSM = ε · sign(∇xL(fθ (x), y))                                              (4) 

PGD: δPGD = clipε(δPGD+α·sign(∇xL(fθ (x+δPGD), y)))                           (5) 

where ε is the maximum allowable perturbation, α is the step size for PGD, clipε clips the 
perturbation to be within ε, and ∇x is the gradient with respect to the input x  

 

The optimization is performed using the ADAM optimizer, which is a popular gradient descent 
optimization algorithm that uses both the gradient of the loss function and the exponential 
moving average of past gradients to update the model parameters. The ADAM optimizer 
updates the parameters with the following formula:  

θt+1 = θt − η √ˆvt + ε ˆmt                                                      (6) 

where θt is the model parameters at iteration t, η is the learning rate, ˆmt is the estimate of the 
first moment of the gradients, ˆvt is the estimate of the second moment of the gradients, and ε 
is a small constant to prevent division by zero. The estimates of the first and second moments 
are calculated as follows:  

mt = β1mt−1 + (1 − β1)gt (7) vt = β2vt−1 + (1 − β2)g2 t                              (8) 

where gt is the gradient of the loss function at iteration t, β1 and β2 are the exponential decay 
rates for the first and second moments, respectively. 
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3.3. Implementation:  

We implemented our approach as follows. First, we generated adversarial examples using 
FGSM and PGD attacks on the training dataset. Specifically, we used the FGSM attack with a 
perturbation limit of ε = 8/255 and the PGD attack with a perturbation limit of ε = 8/255 as 
well, step size of α = 6/255, and K = 30 iterations. We combined the generated adversarial 
examples with clean data to create a new dataset for training.  

We split the combined dataset into 80% for training and 20% for validation. We used a learning 
rate of η = 0.001 and set up early stopping on the validation loss with patience of 5 to prevent 
overfitting of the model. We employed the Adam optimizer to train the model with a batch size 
of 64 and for 60 epochs.  

We have trained the model to minimize the crossentropy loss function, which is defined as 
follows:  

L(θ) = 1 N N∑ i=1 ℓ(fθ (xi), yi)                                                       (9) 

where θ denotes the model parameters, N is the number of samples, xi and yi are the input and 
target label of the i-th sample, respectively, fθ is the neural network model, and ℓ is the cross-
entropy loss function defined as follows: 

ℓ(ˆy, y) = − C∑ j=1 yj log(ˆyj )                                                   (10) 

where C is the number of classes, ˆy is the predicted probability distribution, and y is the one-
hot encoded target label. During training, we updated the model parameters by computing the 
gradients of the loss function for the model parameters using back-propagation:  

∇θ L(θ) = 1 N N∑ i=1 ∇θ ℓ(fθ (xi), yi) (11) 

We used early stopping to prevent overfitting by monitoring the validation loss during training. 

4. Experiments 

4.1. Experiment Setup 

4.1.1.  Datasets 

We conducted experiments on three widely-used datasets; Fashion MNIST, SVHN(street View 
House Numbers)and CIFAR-10 datasets. Fashion MNIST contains 70k grayscale images with 
60k training examples and 10k examples for testing with the size of 28x28 and belongs to 10 
classes; SVHN has 600k color images of house numbers captured by Google Street view of 
different sizes, it contains 73257 training examples, 26032 testing examples and 531131 
additional images for extra training; CIFAR-10 is a dataset of 60k color images with the size of 
32x32 that belongs to 10 classes, it contains 50k training examples a 10k testing examples. We 
trained and tested our model on each dataset separately to showcase its versatility and 
effectiveness across different image types. Our results are presented in the ensuing sections. 

4.1.2.  Neural network architecture 

In this study, we utilized a basic convolutional neural network (CNN) [31] architecture for the 
Fashion MNIST and CIFAR-10 datasets. The CNN architecture consists of three convolutional 
layers, each followed by a max-pooling layer with Rectified Linear Unit (ReLU) as the activation 
function. The output from the convolutional and pooling layers is then flattened using a flatten 
layer, followed by two fully connected dense layers. The first dense layer uses ReLU as the 
activation function, and the final output layer uses SoftMax for classification purposes. 
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(a) Adversarial images generated from 
Fashion MNIST dataset using the MI-FGSM 
attack with ε = 0.03 and k = 30 iterations, 

alpha α = 0.02 and decay value of 0.9 

(b) Adversarial images generated from 
Fashion MNIST dataset using the PGD attack 
with ε = 0.03 and k 20 iterations, and a step 

size α = 0.02 

Figure 2: Standard model’s predictions on the adversarial images generated from Fashion 
MNIST dataset with the MI-FGSM and PGD attacks 

For the SVHN dataset, we employed the same CNN architecture as for the Fashion MNIST and 
CIFAR-10 datasets. However, we modified by adding an additional convolutional layer, 
resulting in a total of four convolutional layers. Each convolutional layer was followed by a max-
pooling layer, and the activation function used for each convolutional layer was Rectified Linear 
Unit (ReLU). After the convolutional and pooling layers, the output was flattened using a flatten 
layer, and then two fully connected dense layers were used with ReLU as the activation function 
for the first layer, and SoftMax for the final output layer. 

4.1.3.  Robust Evaluation: 

We evaluated the performance of our proposed Hybrid FGSM-PGD method against four white-
box attacks: Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), Iterative 
FGSM (IFGSM) and Momentum Iterative FGSM (MIFGSM). These attacks are commonly used to 
generate adversarial examples that can fool image classification models. By subjecting our 
model to these attacks, we aimed to evaluate its resilience and robustness against them. 

4.1.4.  Robust Performance Comparison 

In order to evaluate the robustness of the Hybrid FGSM-PGD against white-box attacks, we 
compare its performance against other adversarial training methods, including the standard 
FGSM and PGD adversarial training and MART adversarial training approach. 

Implementation Details 

Among all attacks in our experiments, we evaluated the robustness of the hybrid FGSM-PGD 
adversarial training method against four different white box attacks: FGSM, PGD, IFGSM, and 
MIFGSM. For all of these attacks, we used a maximum perturbation of 8/255, 20 iterations, a 
step size of 16/255, and a decay factor of 0.9. The FGSM attack generates adversarial examples 
by perturbing each input feature by the sign of the gradient of the loss function for that feature. 
The PGD attack generates adversarial examples by iteratively taking a step in the direction of 
the gradient of the loss function for the input, and projecting the result onto the l-infinity ball 
of radius 8/255 centered at the original input. The IFGSM attack is a variant of PGD that 
performs only one step of gradient descent with the given step size, and then clips the result to 
lie within the l-infinity ball of radius 8/255 centered at the original input. Finally, the MIFGSM 
attack is a multi-step version of IFGSM that uses the decay factor to gradually reduce the step 
size throughout the 20 iterations. 

Performance Comparison 
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Table 1: Fashion-MNIST Performance Comparison Results. 

Models Clean FGSM PGD-20 IFGSM MI-FGSM 

Standard 90.05% 43.40% 0.00 26.03% 20.64% 

FGSM Adv. T 88.39% 91.90% 3.74% 88.05% 87.57% 

PGD Adv. T 86.92% 50.99% 89.13% 43.45% 40.29% 

MART 87.17% 57.22% 88.14% 55.34% 46.90% 

Hybrid 
FGSM-PGD 

87.95% 86.25% 88.40% 89.15% 89.06% 

 

Table 2: SVHN Performance Comparison Results. 

Models Clean FGSM PGD-20 IFGSM MI-FGSM 

Standard 86.63% 11.12% 0.00% 0.42% 0.28% 

FGSM Adv. T 82.22% 84.28% 16.08% 82.20% 81.58% 

PGD Adv. T 78.83% 41.60% 85.29% 19.41% 16.67% 

MART 77.17% 44.22% 85.14% 27.34% 20.90% 

Hybrid 
FGSM-PGD 

78.22% 87.28% 83.93% 86.01% 82.18% 

 

Table 1 shows the performance comparison of different models on the Fashion MNIST dataset 
against various white-box attacks, including FGSM, PGD, IFGSM and MI-FGSM. Table 1 shows 
the accuracy of each model on clean data and the accuracy on data that has been perturbed by 
each attack. According to the results presented in Table 1, we can make the following 
observations: First, the standard or baseline model achieved 90.05% accuracy on clean data, 
but its accuracy decreased significantly under all the considered attacks. The FGSM adversarial 
training model achieved a higher accuracy on clean data (88.39%) and as expected it showed 
better robustness to FGSM adversarial examples with an accuracy of 91.90%. However, its 
accuracy decreased substantially under PGD attack. The PGD adversarial training model was 
the most robust model against PGD, but its accuracy significantly decreased under other attacks. 
The Hybrid FGSM-PGD model achieved an accuracy of 87.95% on clean data and demonstrated 
higher robustness against FGSM and PGD attacks, with accuracy rate of 86.25% and 88.40%. 
Moreover, the hybrid model achieved higher accuracy rates on IFGSM and MI-FGSM attacks 
than the other models and also had a good accuracy on the PGD adversarial attacks. Overall, the 
Hybrid model’s results indicate its superiority to the other models against white box attacks on 
the Fashion MNIST dataset.  

Table 2 shows a performance comparison using the SVHN dataset, and similar conclusions can 
be drawn from it. as those on the Fashion MNIST in Table 1. The Hybrid FGSMPGD model 
achieves good accuracy rates on adversarial examples among all evaluated models with 
accuracy rates above 83% for all attack methods while maintaining a fairly high clean image 
accuracy of 78.22%. These results suggest that the hybrid FGSM-PGD model is a promising 
approach for the robustness of deep learning models.  

 

Table 3: CIFAR-10 Performance Comparison Results. 

Models Clean FGSM PGD-20 IFGSM MI-FGSM 

Standard 76.63% 8.02% 0.00% 0.79% 0.50% 
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FGSM Adv. T 66.02% 60.96% 8.91% 58.44% 57.09% 

PGD Adv. T 71.17% 20.22% 74.14% 6.34% 4.90% 

MART 72.26% 25.33% 72.27% 11.87% 9.12% 

Hybrid 
FGSM-PGD 

68.45% 61.14% 75.26% 58.90% 58.22% 

 

As shown in table 3 for the CIFAR-10 dataset, the hybrid FGSM-PGD model performs better than 
the other models under most of the attack scenarios, with the highest accuracy under the PGD-
20 attack (75.26%). even so, it still has a lower accuracy than the standard model on clean 
images, indicating the trade-off between robustness and accuracy. Overall, the results 
demonstrate the effectiveness of the hybrid FGSM-PGD method in improving the robustness of 
machine learning models against adversarial attacks while maintaining a reasonable level of 
accuracy on clean images. 

  

  

Figure 3: Hybrid model’s performance on the adversarial images generated from Fashion 
MNIST dataset with the MI-FGSM and PGD attacks 

5. Discussion 

The presented experimental results in the tables provide evidence that the hybrid FGSM-PGD 
adversarial training method is highly effective in improving the robustness of deep learning 
models against various adversarial attacks. The hybrid FGSM-PGD model demonstrates higher 
accuracy rates than the standard model in all three datasets, namely CIFAR-10, SVHN, and 
Fashion-MNIST datasets. Additionally, the hybrid model outperforms the FGSM adversarial 
training model (FGSM Adv.T), PGD adversarial training model (PGD Adv.T), and MART models 
in certain experiments. For instance, in the Fashion-MNIST dataset, the hybrid model surpasses 
the MART model in the PGD-20, IFGSM, and MI-FGSM experiments. Similarly, in the SVHN 
dataset, the hybrid model shows better results than the FGSM adversarial training method and 
MART models in the PGD-20 experiment.  

One reason for the hybrid FGSM-PGD model’s superior performance is its ability to combine the 
FGSM and PGD attacks’ strengths. The FGSM attack is known for its fast and efficient approach 
to creating adversarial examples, but it produces weak ones. Meanwhile, the PGD attack is 
computationally expensive but generates robust adversarial examples. However, the hybrid 
model exploits the benefits of both attacks during the training process to improve the model’s 
ability to withstand various types of white box adversarial attacks.  

The hybrid model also uses a scheduled training process that gradually introduces the PGD 
attack into the training process. This gradual introduction helps the model learn progressively 
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more complex decision boundaries, leading to better robustness against white-box adversarial 
attacks. Overall, the hybrid FGSM-PGD model provides a promising approach to improving the 
robustness of deep learning models against adversarial attacks, and its performance merits 
further investigation. 

6. Conclusion 

In conclusion, this paper proposed a novel adversarial training technique, the Hybrid FGSM-
PGD method, which combines the FGSM and PGD approaches to enhance the robustness of deep 
learning models against various white box-attacks. Our experiments on Fashion MNIST, SVHN, 
and CIFAR-10 datasets showed that our method outperforms other adversarial training 
techniques in terms of practicality and effectiveness. Furthermore, our proposed method can 
be easily integrated into existing adversarial training frameworks. These results suggest that 
the Hybrid FGSM-PGD method can be a promising solution for improving the security of deep 
learning applications. 
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