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Abstract 

In this paper, we focus on the continuity of the solution mappings of parametric set 
optimization problems with the Minkowski difference. Under some suitable 
assumptions, the lower semicontinuity concerned with a nonlinear scalarization 
function for sets is first presented. Then, the lower semicontinuity of the solution 
mappings of parametric set optimization problems is established by the lower 
semicontinuity of the nonlinear scalarization function. 
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1. Introduction 

In recent years, the extension of vector-valued optimization problem to set-valued optimization 
problem has received an increasing attention due to their wide applications in many fields such 
as optimal control, differential inclusions, game theory, robust optimization, fuzzy optimization, 
welfare economics and mathematical finance; see, for instance, [1-3] and the references therein. 
In the literature, there are mainly two types of criteria of solution for set-valued optimization 
problems. The classical one is the vector criterion: a solution of a set-valued map is defined via 
the minimal element of the image set of the map with respect to the usual ordering relation of 
vector optimization. Although it is of mathematical interest, it does not seem natural whenever 
one needs to consider preferences over sets, since only one element does not necessarily imply 
that the whole image set is in a certain sense minimal with respect to all image sets. In order to 
overcome this drawback, the set criterion is proposed by Kuroiwa [4]. The set criterion is that 
a solution is defined via the minimal set of the collection of all image sets with respect to set 
order relations. Regarding this criterion, there are some other set order relations considered in 
set-valued optimization problems. We refer the reader to [5,6] and the references therein for 
more details. A set-valued optimization problem with this criterion is called a set optimization 
problem. 

It is well known that nonlinear scalarization functions are the most essential tools in vector or 
set optimization. There are mainly two types of scalarization functions in vector optimization. 
They are the Gerstewitz's function [1,7,8] and the oriented distance function [9,10]. Accordingly, 
in set optimization, there are also two kinds of scalarization functions have been used: the 
extensions of the Gerstewitz's function [6,11-14] and the extensions of the oriented distance 
function of Hiriart-Urruty [11,15]. In terms of scalarization techniques, several theoretical 
aspects of set optimization were discussed, such as characterization of several types of optimal 
solutions, alternative theorems, optimality conditions and the well-posedness; see, for instance,  
[11-18] and the references therein. 

As we know, the continuity of the extensions of the Gerstewitz's function play a significant role 
in the research of the existence and the stability of set optimization problems. For more details, 
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we refer the reader to [12,19]. Therefore, it is necessary and interesting to investigate the 
continuity for the extensions of the Gerstewitz's function. In this paper, we give the lower 
continuity of the nonlinear scalarization function proposed by Karaman et al. in [6], which is 
defined by a partial set order relation involving the Minkowski difference. As an application, we 
study the stability of set optimization problems. 

The rest of the paper is organized as follows. In section 2, we introduce some definitions and 
previous results required throughout the paper. In Section 3, by using some properties of 
nonlinear scalarization functions defined in [6] and well-known results for set-valued 
mappings, we first show the lower semi continuity and convexity of a nonlinear scalarization 
function for sets. Then we explore an application of properties of the nonlinear scalarization 
function to the lowercontinuity of solution mappings of a parametric set optimization problem. 
In Section 4, we give the concluding remarks of the paper. 

2. Preliminaries 

In this section, we recall some basic definitions and properties which are necessary for this 
study. Throughout this paper, 𝑋 and 𝑌 are two normed vector spaces. Given a subset 𝐴 of 𝑌, the 
closure, the complement, the topological interior, the boundary and the convex hull of 𝐴 are 
denoted, respectively, by cl⁡ 𝐴, 𝐴𝑐 , int 𝐴, bd 𝐴 and conv 𝐴. We denote by 𝔹𝑌 the closed unit ball 
in 𝑌, i.e., 𝔹𝑌:= {𝑎 ∈ 𝑌: ∥ 𝑎 ∥≤ 1}. The family of nonempty proper subsets of 𝑌, the family of 
nonempty bounded subsets of 𝑌 and the family of nonempty compact subsets of 𝑌 are denoted 
by 𝒫0(𝑌),ℬ

∗(𝑌)  and ℬ∗∗(𝑌) , respectively. For every 𝐴, 𝐵 ∈ 𝒫0(𝑌)  and 𝜆 ∈ ℝ , we denote 
respectively 

𝐴 −𝐵 = {𝑦1 −𝑦2: 𝑦1 ∈ 𝐴, 𝑦2 ∈ 𝐵},⁡⁡⁡𝜆𝐴 = {𝜆𝑦: 𝑦 ∈ 𝐴} 

by the algebraic difference of the sets 𝐴 and 𝐵, and the scalar multiplication of the set 𝐴. 

A nonempty subset 𝐶 ⊆ ℝ𝑚 is said to be a cone if 𝑡𝐶 ⊆ 𝐶 for all 𝑡 ≥ 0. A cone 𝐶 ⊆ ℝ𝑚 is said to 
be convex (resp. pointed) if and only if 𝐶 + 𝐶 ⊆ 𝐶 (resp. 𝐶 ∩ (−𝐶) = {0ℝ𝑚}). Throughout the 
paper, we assume that 𝐶 is a closed, convex and pointed cone with nonempty interior. Let 𝑌∗ be 
the topological dual space of 𝑌 and the dual cone of 𝐶 be denoted by 𝐶∗, which is defined by 
𝐶∗ = {𝑓 ∈ 𝑌∗: 𝑓(𝑐) ≥ 0,∀𝑐 ∈ 𝐶}. 

For 𝐴,𝐵 ∈ 𝒫0(𝑌), the Minkowski difference of 𝐴 and 𝐵, considered in [20], is given by 

𝐵−̇𝐴: = {𝑧 ∈ 𝑌: 𝑧 + 𝐴 ⊆ 𝐵} =⋂  

𝑎∈𝐴

(𝐵 − 𝑎). 

It is worth mentioning that the Minkowski difference of a set and a vector coincide with the 
algebraic difference of them, that is, 𝐴−̇𝑏 = 𝐴 − 𝑏  for all 𝐴 ∈ 𝒫0(𝑌) and 𝑏 ∈ 𝑌 . In addition, 
(𝐴−̇𝐵) − 𝑏 = 𝐴−̇𝐵 − 𝑏 = 𝐴−̇(𝐵 + 𝑏)  and (𝐴 − 𝑏)−̇𝐵 = (𝐴−̇𝐵) − 𝑏 , for all 𝐴, 𝐵 ∈ 𝒫0(𝑌)  and 
𝑏 ∈ 𝑌. 

We now recall some order relations on 𝒫0(𝑌). The first one is the lower set order relation ≤𝐶
𝑙  

and the upper set order relation ≤𝐶
𝑢  on 𝒫0(𝑌), which are discussed by [4]. 

𝐴 ≤𝐶
𝑙 𝐵 ⇔ 𝐵 ⊆ 𝐴 + 𝐶; 𝐴 ≤𝐶

𝑢 𝐵 ⇔ 𝐴 ⊆ 𝐵 −𝐶. 

What is noteworthy is that ≤𝐶
𝑙  and ≤𝐶

𝑢  are pre-order relations, i.e., reflexive and transitive 
relations, on 𝒫0(𝑌). Recently, by using the Minkowski difference, Karaman et al. [6] introduced 
the following partial order relations on the family of nonempty bounded sets, namely, they are 
reflexive, transitive and antisymmetric on ℬ∗(𝑌). 

Definition 2.1. [6] Let 𝐴, 𝐵 ∈ 𝒫0(𝑌). 

𝐴 ≤𝐶
𝑚1 𝐵 ⟺ (𝐵−̇𝐴) ∩ 𝐶 ≠ ∅. 

 𝐴 ≺𝐶
𝑚1 𝐵 ⟺ (𝐵−̇𝐴) ∩ int⁡ 𝐶 ≠ ∅. 

 𝐴 ≤𝐶
𝑚2 𝐵 ⟺ (𝐴−̇𝐵) ∩ −𝐶 ≠ ∅. 
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 𝐴 ≺𝐶
𝑚2 𝐵 ⟺ (𝐴−̇𝐵) ∩ − int 𝐶 ≠ ∅. 

In the rest of this paper, we only consider the order relation ≤𝐶
𝑚2 , since we can obtain the 

corresponding results for the order relation ≤𝐶
𝑚1 . 

Let 𝐾  be a nonempty subset of 𝑋 . Let 𝐹: 𝐾 ⇉ 𝑌  be a set-valued mapping. We consider the 

following set optimization problem with set order ≤𝐶
𝑚2  (for short, 𝑚2-SOP): 

(𝑚2 − SOP)⁡min
𝐶
 𝐹(𝑥) subject⁡to ⁡𝑥 ∈ 𝐾. 

When the set 𝐾 and the mapping 𝐹 are perturbed by a parameter 𝜆 which varies over a subset 
Λ in a normed space, we consider the following parametric set optimization problem with set 
order ≤𝐶

𝑚2  (for short, 𝑚2-PSOP): 

(𝑚2-PSOP) ⁡min
𝐶
 𝐹(𝑥, 𝜆) subject⁡to ⁡𝑥 ∈ 𝐾(𝜆). 

Definition 2.2. [6] An element 𝑥0 ∈ 𝐾 is said to be 

a 𝑚2-minimal solution of (𝑚2-SOP) if there does not exist any 𝑥 ∈ 𝐾 with 𝐹(𝑥) ≠ 𝐹(𝑥0) such 

that 𝐹(𝑥) ≤𝐶
𝑚2 𝐹(𝑥0), that is, either 𝐹(𝑥) ⋠𝐶

𝑚2 𝐹(𝑥0) or 𝐹(𝑥) = 𝐹(𝑥0) for any 𝑥 ∈ 𝐾; 

a weak 𝑚2-minimal solution of (𝑚2-SOP) if there does not exist any 𝑥 ∈ 𝐾 such that 𝐹(𝑥) <𝐶
𝑚2 

𝐹(𝑥0). 

Let argmin𝑚2
⁡(𝐾, 𝐹)  and argmin𝑤𝑚2

⁡(𝐾, 𝐹)  denote the 𝑚2 -minimal solution set of (𝑚2 -SOP) 

and the weak 𝑚2-minimal solution set of (𝑚2-SOP), respectively. Besides, the solution concepts 
of the problem (𝑚2-PSOP) can be similarly defined. For each 𝜆 ∈ Λ, let 𝑆(𝜆) and 𝑆𝑤(𝜆) denote 
the 𝑚2-minimal solution set of (𝑚2-PSOP) and the weak 𝑚2-minimal solution set of (𝑚2-PSOP), 
respectively. Throughout the paper, we always assume that argmin𝑚2

⁡(𝐾, 𝐹) ≠ ∅ and 𝑆(𝜆) ≠ ∅. 

In order to give the relationship between the sets argmin𝑚2
⁡(𝐾, 𝐹) and argmin𝑤𝑚2

⁡(𝐾, 𝐹), we 

need to recall a vital conclusion presented by Karaman et al. in [6]. 

Lemma 2.1. If 𝐴 ∈ ℬ∗(𝑌), then 𝐴−̇𝐴 = {0𝑌}. 

Proposition 2.1. Assume that 𝐹(𝑥) is bounded for each 𝑥 ∈ 𝐾. Then 

argmin𝑚2
⁡(𝐾, 𝐹) ⊆ argmin𝑤𝑚2

⁡(𝐾, 𝐹). 

Proof. Suppose to the contrary that there exists 𝑥0 ∈ argmin𝑚2
⁡(𝐾, 𝐹)  such that 𝑥0 ∉

argmin𝑤𝑚2
⁡(𝐾, 𝐹). Then, there exists 𝑦0 ∈ 𝐾 such that 

 (𝐹(𝑦0)−̇𝐹(𝑥0)) ∩ (−int⁡ 𝐶) ≠ ∅. (1) 

This together with Lemma 2.1 gives us 𝐹(𝑥0) ≠ 𝐹(𝑦0) . Moreover, (1) also implies that 
𝐹(𝑦0) ≤𝐶

𝑚2  𝐹(𝑥0). Thus, it follows that 𝑥0 ∉ argmin𝑚2
⁡(𝐾, 𝐹), which leads to a contradiction. 

The following example is given to show that the statement argmin𝑚2
⁡(𝐾, 𝐹) ⊆

argmin𝑤𝑚2
⁡(𝐾, 𝐹) may be not true if the values of 𝐹 are unbounded. 

Example 2.1 Let 𝐾 = [0,1],𝑌 = ℝ2, 𝐶 = ℝ+
2  and 𝑒 = (1,1). Let 𝐹: 𝐾 ⇉ 𝑌 be defined by 

𝐹(𝑥) = {
ℝ𝑒,  if 𝑥 ∈ {0,1},
{0ℝ2},  if 𝑥 ∈ (0,1).

 

It is easy to verify that argmin𝑚2
⁡(𝐾, 𝐹) = {0,1} and argmin𝑤𝑚2

⁡(𝐾, 𝐹) = ∅. 

Definition 2.3. [21] A topological space 𝑇 is said to be path connected (or arcwise connected) if 
for any 𝑥, 𝑦 ∈ 𝑇, there exists a continuous mapping 𝛾: [0,1] → 𝑇 such that 𝛾(0) = 𝑥 and 𝛾(1) =
𝑦. 

Definition 2.4. [22] Let 𝑇1  and 𝑇2  be two topological vector spaces. A set-valued mapping 
𝐺:𝑇1 ⇉ 𝑇2 is said to be 

lower semicontinuous (1.s.c.) at 𝑡‾ ∈ 𝑇1 iff, for every open set 𝑉 ⊆ 𝑇2 with 𝐺(𝑡‾) ∩ 𝑉 ≠ ∅, there is 
a neighbourhood 𝑁(𝑡‾) of 𝑡‾ such that for any 𝑡 ∈ 𝑁(𝑡‾) with 𝐺(𝑡) ∩ 𝑉 ≠ ∅; 
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upper semicontinuous (u.s.c.) at 𝑡‾ ∈ 𝑇1 iff, for every open set 𝑉 ⊆ 𝑇2 with 𝐺(𝑡‾) ⊆ 𝑉, there is a 
neighbourhood 𝑁(𝑡‾) of 𝑡‾ such that for any 𝑡 ∈ 𝑁(𝑡‾) with 𝐺(𝑡) ⊆ 𝑉; 

Hausdorff upper semicontinuous (H-u.s.c.) at 𝑡‾ ∈ 𝑇1 iff, for each neighbourhood 𝑈 of 0𝑇2, there 

is a neighbourhood 𝑁(𝑡‾) of 𝑡‾ such that for any 𝑡 ∈ 𝑁(𝑡‾) with 𝐺(𝑡) ⊆ 𝐺(𝑡‾) + 𝑈. 

We say that 𝐺 is 1.s.c. (resp. u.s.c.) on 𝑇1 , if it is 1.s.c. (resp. u.s.c.) at each 𝑡 ∈ 𝑇1. G is said to be 
continuous on 𝑇1 if it is both l.s.c. and u.s.c. on 𝑇1. 

Proposition 2.2 [23, 24] Assume that 𝑇1 and 𝑇2 be two normed vector spaces. Let 𝐺: 𝑇1 ⇉ 𝑇2 be 
a set-valued mapping. Then, the following statements are true. 

𝐺 is l.s.c. at 𝑡‾ if and only if for any sequence {𝑡𝑛} ⊂ 𝑇1  with 𝑡𝑛 → 𝑡‾ and for any 𝑥‾ ∈ 𝐺(𝑡‾), there 
exists 𝑥𝑛 ∈ 𝐺(𝑡𝑛) such that 𝑥𝑛 → 𝑥‾. 

If 𝐺 has compact values at 𝑡‾, then 𝐺 is u.s.c. at 𝑡‾ if and only if for any net {𝑡𝑛} ⊂ 𝑇1 with 𝑡𝑛 → 𝑡‾ 

and any 𝑥𝑛 ∈ 𝐺(𝑡𝑛), there exist 𝑥‾ ∈ 𝐺(𝑡‾) and a subsequence {𝑥𝑛𝑘} of {𝑥𝑛} such that 𝑥𝑛𝑘 → 𝑥‾. 

Definition 2.5. [6] For 𝑒 ∈ int⁡𝐶, the function 𝐼𝑒
𝑚2(⋅,⋅):𝒫0(𝑌) × 𝒫0(𝑌) → ℝ ∪ {±∞} is defined by 

𝐼𝑒
𝑚2(𝐴, 𝐵):= inf{𝑡 ∈ ℝ:𝐴 ≤𝐶

𝑚2 𝑡𝑒 + 𝐵}. 

Proposition 2.3. ([6]) 

If 𝐴 ∈ ℬ∗(𝑌) and 𝐵 ∈ 𝒫0(𝑌), then 𝐼𝑒
𝑚2(𝐴, 𝐵) > −∞; 

Let 𝐴,𝐵 ∈ 𝒫0(𝑌). Then, 𝐼𝑒
𝑚2(𝐴,𝐵) = +∞ if and only if 𝐴−̇𝐵 = ∅. 

Proposition 2.4. ([6]) If 𝐴, 𝐵 ∈ 𝒫0(𝑌)  and 𝐴−̇𝐵  is compact, then 𝐼𝑒
𝑚2(𝐴,𝐵) = min{𝑡 ∈

ℝ: 𝐴 ≤𝐶
𝑚2𝑡𝑒 + 𝐵}. 

Proposition 2.5. ([6]) Let 𝐴,𝐵 ∈ 𝒫0(𝑌) and 𝑟 ∈ ℝ. Then, the following statements hold. 

𝐼𝑒
𝑚2(𝐴, 𝐵) < 𝑟 if and only if 𝐴 ≺𝐶

𝑚2 𝑟𝑒 + 𝐵. 

Let 𝐴−̇𝐵 be compact, then 𝐼𝑒
𝑚2(𝐴, 𝐵) ≤ 𝑟 if and only if 𝐴 ≤𝐶

𝑚2 𝑟𝑒 + 𝐵. 

3. Lower Continuity of the Solution Set Mappings of (𝒎𝟐-PSOP) 

In the section, we discuss the lower semicontinuity of the weak 𝑚2 -minimal solution set 
mapping 𝑆𝑤(⋅)  and the 𝑚2 -minimal solution set mapping 𝑆(⋅)  to (𝑚2 -PSOP) by using a 
nonlinear scalarization method. 

Let us start by showing the lower semicontinuity of a nonlinear scalarization function based on 

the function 𝐼𝑒
𝑚2(⋅,⋅). Let Λ1 and Λ2 be two normed vector spaces. Assume that 𝐴:Λ1 ⇉ 𝑌 and 

𝐵: Λ2 ⇉ 𝑌  are two set-valued mappings. The function 𝜔:Λ1 × Λ2 → ℝ ∪ {±∞}  is defined as 
follows: 

𝜔(𝜇, 𝜂): = 𝐼𝑒
𝑚2(𝐴(𝜇), 𝐵(𝜂)) = inf{𝑡 ∈ ℝ:𝐴(𝜇) ≤𝐶

𝑚2 𝑡𝑒 + 𝐵(𝜂)}, ⁡(𝜇, 𝜂) ∈ Λ1 ×Λ2. 

In the sequel, we always assume that, for any given 𝜇 ∈ Λ1, 𝜂 ∈ Λ2, 𝐴(𝜇) ∈ ℬ∗(𝑌), 𝐵(𝜂) ∈ 𝒫0(𝑌), 
and 𝐴(𝜇)−̇𝐵(𝜂) ≠ ∅. Then, by Proposition 2.3, we have 

−∞ < 𝜔(𝜇, 𝜂) < +∞, ⁡∀(𝜇, 𝜂) ∈ Λ1 ×Λ2. 

Proposition 3.1. Assume that 𝐴(⋅) and 𝐵(⋅) are continuous with nonempty compact values, then 
𝜔(⋅,⋅) is continuous on Λ1 × Λ2. 

Proof. Firstly, we prove that 𝜔(⋅,⋅) is lower semicontinuous on Λ1 × Λ2. For any 𝑟 ∈ ℝ, let 

𝑀𝑙 = {(𝜇, 𝜂) ∈ Λ1 × Λ2: 𝜔(𝜇, 𝜂) ≤ 𝑟}. 

It suffices to show that 𝑀𝑙  is a closed subset of Λ1 × Λ2 . Let {(𝜇𝑛, 𝜂𝑛)} ⊆ 𝑀𝑙  with (𝜇𝑛, 𝜂𝑛) →
(𝜇0, 𝜂0). Suppose that (𝜇0, 𝜂0) ∉ 𝑀𝑙 . Then 𝐴(𝜇0) ⋠𝐶

𝑚2 𝑟𝑒 + 𝐵(𝜂0) by Proposition 2.5 (ii). This 
indicates that (𝐴(𝜇0)−̇𝐵(𝜂0) − 𝑟𝑒) ∩ −𝐶 = ∅. According to 𝐴(𝜇0)−̇𝐵(𝜂0) ≠ ∅, we have 

 𝑥 − 𝑟𝑒 ∉ −𝐶, ⁡∀𝑥 ∈ 𝐴(𝜇0)−̇𝐵(𝜂0). (2) 

Now we claim that there exists 𝑁0 ∈ ℕ such that when 𝑛 ≥ 𝑁0 

 𝑥𝑛 − 𝑟𝑒 ∉ −𝐶, ⁡∀𝑥𝑛 ∈ 𝐴(𝜇𝑛)−̇𝐵(𝜂𝑛).  (3) 
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If not, then for any 𝑛, there exist 𝑚𝑛 ≥ 𝑛 and 𝑥‾𝑚𝑛
∈ 𝐴(𝜇𝑚𝑛

)−̇𝐵(𝜂𝑚𝑛
) such that 𝑥‾𝑚𝑛

− 𝑟𝑒 ∈ −𝐶. 

Without loss of the generality, we assume that there exists 𝑥‾𝑛 with 

 𝑥‾𝑛 + 𝐵(𝜂𝑛) ⊆ 𝐴(𝜇𝑛), (4) 

such that 

 𝑥‾𝑛 − 𝑟𝑒 ∈ −𝐶, ∀𝑛.  (5) 

Thanks to (4), we have 𝑥‾𝑛 +𝑦𝑛 ∈ 𝐴(𝜇𝑛) for any 𝑦𝑛 ∈ 𝐵(𝜂𝑛). As 𝐴(⋅) is u.s.c. with compact values 
at 𝜇0 and 𝐵(⋅) is u.s.c. with compact values at 𝜂0, we see that the sequences {𝑦𝑛} and {𝑥‾𝑛 + 𝑦𝑛} 
have convergent subsequences by Proposition 2.2 (ii). Consequently, {𝑥‾𝑛} has a convergent 

subsequence {𝑥‾𝑛𝑘}. Without loss of the generality, we assume that 𝑥‾𝑛 → 𝑥0. Now, we show that 

𝑥0 ∈ 𝐴(𝜇0)−̇𝐵(𝜂0). Indeed, for any 𝑏 ∈ 𝐵(𝜂0), by the lower semicontinuity of the mapping 𝐵(⋅), 
there exists 𝑏𝑛 ∈ 𝐵(𝜂𝑛) such that 𝑏𝑛 → 𝑏. It follows from (4) that there exists 𝑎𝑛 ∈ 𝐴(𝜇𝑛) such 
that 

 𝑥‾𝑛 + 𝑏𝑛 = 𝑎𝑛. (6) 

Since 𝐴(⋅) is u.s.c. with compact values at 𝜇0, by Proposition 2.2 (ii), there exist 𝑎0 ∈ 𝐴(𝜇0) and 

a subsequence {𝑎𝑛𝑘} of {𝑎𝑛} such that 𝑎𝑛𝑘 → 𝑎0 . Combining this with 𝑥‾𝑛 → 𝑥0, 𝑏𝑛 → 𝑏 and (6), 

we arrive at 𝑥0 + 𝑏 = 𝑎0 ∈ 𝐴(𝜇0). Moreover, by the arbitrariness of 𝑏 ∈ 𝐵(𝜂0), we have 𝑥0 +
𝐵(𝜂0) ⊆ 𝐴(𝜇0), i.e., 𝑥0 ∈ 𝐴(𝜇0)−̇𝐵(𝜂0). With the help of (5), 𝑥‾𝑛 → 𝑥0 and taking into account the 
closedness of 𝐶, we have 

𝑥0 − 𝑟𝑒 ∈ −𝐶, 

which contradicts (2). Hence, (3) holds. This implies that 𝐴(𝜇𝑛)  and so 𝜔(𝜇𝑛, 𝜂𝑛) >  𝑟  by 
Proposition 2.5 (ii). This leads to a contradiction. Therefore, 𝑀𝑙 is a closed subset of Λ1 × Λ2 
and so the proof is completed. 

Define 𝜑: 𝑋 × 𝑋 × Λ → ℝ ∪ {±∞} by 

𝜑(𝑥, 𝑦, 𝜆) = 𝐼𝑒
𝑚2(𝐹(𝑦, 𝜆), 𝐹(𝑥, 𝜆)), ⁡∀(𝑥, 𝑦) ∈ 𝑋 × 𝑋. 

Lemma 3.1. For each 𝜆 ∈ Λ, one has 

𝑆𝑤(𝜆) = {𝑥 ∈ 𝐾(𝜆):𝜑(𝑥, 𝑦, 𝜆) ≥ 0, ⁡∀𝑦 ∈ 𝐾(𝜆)}. 

Proof. By the definition of 𝑚2-minimal solution set of ( 𝑚2-PSOP), for each 𝜆 ∈ Λ, we have 𝑥 ∈
𝑆𝑤(𝜆) if and only if 

𝐹(𝑦, 𝜆) ≤𝐶
𝑚2 𝐹(𝑥, 𝜆), ⁡∀𝑦 ∈ 𝐾(𝜆). 

This indicates that 𝜑(𝑥, 𝑦, 𝜆) ≥ 0 for any 𝑦 ∈ 𝐾(𝜆) by Proposition 2.5 (i). Henceforth, the proof 
is complete. 

Next, we prove the lower semicontinuity of 𝑆𝑤(⋅) and 𝑆(⋅). Let 𝑆̂: Λ ⇉ 𝑋 be defined by 

𝑆̂(𝜆):= {𝑥 ∈ 𝐾(𝜆):𝜑(𝑥, 𝑦, 𝜆) > 0, ⁡∀𝑦 ∈ 𝐾(𝜆)}. 

In the sequel, we assume that 𝑆̂(𝜆) ≠ ∅ for each 𝜆 ∈ Λ. In order to establish the main results, 
we need the following several lemmas. 

Lemma 3.2. Let 𝜆0 ∈ Λ. Assume that 

𝐾(⋅) is continuous with nonempty compact values at 𝜆0; 

𝐹(⋅,⋅) is continuous with nonempty compact values on 𝐾(𝜆0) × {𝜆0}; 

𝐹(𝑦, 𝜆)−̇𝐹(𝑥, 𝜆) ≠ ∅ for any 𝑥, 𝑦 ∈ 𝐾(𝜆0) and for any 𝜆 ∈ Λ. 

Then 𝑆̂(⋅) is l.s.c. at 𝜆0. 

Proof. To prove the result by contradiction, suppose that 𝑆̂(⋅)  is not l.s.c. at 𝜆0 . Then by 

Proposition 2.2 (i), there exist a sequence {𝜆𝑛} with 𝜆𝑛 → 𝜆0 and 𝑥0 ∈ 𝑆̂(𝜆0) such that for any 

𝑥𝑛 ∈ 𝑆̂(𝜆𝑛), we have 𝑥𝑛 ↛ 𝑥0. 

From 𝑥0 ∈ 𝑆̂(𝜆0), we have 𝑥0 ∈ 𝐾(𝜆0). As 𝐾(⋅) is l.s.c. at 𝜆0, there exists 𝑥‾𝑛 ∈ 𝐾(𝜆𝑛) such that 

𝑥‾𝑛 → 𝑥0. By the above contradiction assumption, there exists a subsequence {𝑥‾𝑛𝑘} of {𝑥‾𝑛} such 
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that 𝑥‾𝑛𝑘 ∉ 𝑆̂(𝜆𝑛𝑘), for any 𝑘 ∈ ℕ. Without loss of the generality, we assume that 𝑥‾𝑛 ∉ 𝑆̂(𝜆𝑛), for 

any 𝑛 ∈ ℕ. Then there exists 𝑦𝑛 ∈ 𝐾(𝜆𝑛) such that 

 𝜑(𝑥‾𝑛, 𝑦𝑛, 𝜆𝑛) ≤ 0, ⁡∀𝑛 ∈ ℕ. (7) 

Since 𝐾(⋅) is u.s.c. with nonempty compact values at 𝜆0, by Proposition 2.2 (ii), there exist 𝑦0 ∈

𝐾(𝜆0) and a subsequence {𝑦𝑛𝑘} of {𝑦𝑛} such that 𝑦𝑛𝑘 → 𝑦0. It follows from Proposition 3.1 that 

𝜑(⋅,⋅,⋅) is lower continuous on 𝐾(𝜆0) × 𝐾(𝜆0) × {𝜆0}. This together with (7) states that 

𝜑(𝑥0, 𝑦0, 𝜆0) ≤ 0, 

which contradicts 𝑥0 ∈ 𝑆̂(𝜆0). Thus 𝑆̂(⋅) is l.s.c. at 𝜆0. 

Lemma 3.3. Let 𝜆0 ∈ Λ. Assume that the following conditions hold. 

𝐾(⋅) is continuous with nonempty compact values at 𝜆0; 

𝐹(⋅,⋅) is continuous with nonempty compact values on 𝐾(𝜆0) × {𝜆0}; 

𝐹(𝑦, 𝜆0)−̇𝐹(𝑥, 𝜆0) ≠ ∅ for any 𝑥, 𝑦 ∈ 𝐾(𝜆0). 

Then, we have 

 𝑆̂(𝜆0) ⊆ 𝑆(𝜆0) ⊆ 𝑆𝑤(𝜆0) ⊆ cl⁡ 𝑆̂(𝜆0). (8) 

Proof. We claim that 

 𝑆̂(𝜆0) ⊆ 𝑆(𝜆0) ⊆ 𝑆𝑤(𝜆0). (9) 

Indeed, for any 𝑥 ∈ 𝑆̂(𝜆0), by Proposition 2.5 (ii), we have 

𝐹(𝑦, 𝜆0) ⋠𝐶
𝑚2 𝐹(𝑥, 𝜆0), ⁡∀𝑦 ∈ 𝐾(𝜆0). 

This implies that 𝑥 ∈ 𝑆(𝜆0) and so 𝑆̂(𝜆0) ⊆ 𝑆(𝜆0). Simultaneously, taking into account 𝑆(𝜆0) ⊆ 

𝑆𝑤(𝜆0), we see that (9) is valid. Besides, the inclusion 𝑆𝑤(𝜆0) ⊆ cl⁡ 𝑆̂(𝜆0) holds obviously. As a 
consequence, (9) is true and the proof is completed. 

Theorem 3.1. Let 𝜆0 ∈ Λ. Assume that the following conditions hold. 

𝐾(⋅) is continuous with nonempty compact values at 𝜆0; 

𝐹(⋅,⋅) is continuous with nonempty compact values on 𝐾(𝜆0) × {𝜆0}; 

𝐹(𝑦, 𝜆)−̇𝐹(𝑥, 𝜆) ≠ ∅ for any 𝑥, 𝑦 ∈ 𝐾(𝜆0) and for any 𝜆 ∈ Λ. 

Then, 𝑆(⋅) is l.s.c. at 𝜆0. Moreover, 𝑆𝑤(⋅) is l.s.c. at 𝜆0. 

Proof. Since the proof is similar to one for the mapping 𝑆𝑤(⋅), we only prove that 𝑆(⋅) is l.s.c. at 
𝜆0 . Indeed, for any 𝑥 ∈ 𝑆(𝜆0) and for any neighborhood 𝑈(𝑥) of 𝑥 , and noting that 𝑆(𝜆0) ⊆ 

cl⁡ 𝑆̂(𝜆0) obtained in Lemma 3.3, we have 

𝑈(𝑥) ∩ 𝑆̂(𝜆0) ≠ ∅. 

By Lemma 3.2, we have 𝑆̂(⋅) is l.s.c. at 𝜆0. Thus there exists a neighborhood 𝑈(𝜆0) of 𝜆0 such that 

𝑆̂(𝜆) ∩ 𝑈(𝑥) ≠ ∅, ⁡∀𝜆 ∈ 𝑈(𝜆0). 

Since 𝑆̂(𝜆) ⊂ 𝑆(𝜆) for each 𝜆 ∈ Λ, we have 

𝑆(𝜆) ∩ 𝑈(𝑥) ≠ ∅, ⁡∀𝜆 ∈ 𝑈(𝜆0). 

This means that 𝑆(⋅) is l.s.c at 𝜆0. 

Remark 3.1 We would like to mention that our main results in this section are different from 
those in [25-28]. In fact, we study the lower semicontinuity of the minimal solution mapping 
𝑆(⋅) and the weak minimal solution mapping 𝑆𝑤(⋅) for parametric set optimization problems 
with set order relation ≤𝐶

𝑚2 , while [25-28] discuss lowersemicontinuity of the minimal solution 
mapping 𝑆(⋅) and the weak minimal solution mapping 𝑆𝑤(⋅) for parametric set optimization 
problems involving the lower set less relation ≤𝑙  or upper set less relation ≤𝑢 . Besides, in this 
section, we used the nonlinear scalarization method to establish the density result and then 
give the sufficient conditions for the semicontinuity of the minimal solution mapping 𝑆(⋅) and 
the weak minimal solution mapping 𝑆𝑤(⋅) to (𝑚2-PSOP). The method does not need the any 
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convexity of the objective function and so it is different from level set mappings or monotonicity 
approaches proposed in [25-28].  

Remark 3.2 Recently, Preechasilp and Wangkeeree [29] obtained the lower semicontinuity of 
the 𝑚1 -minimal solution mapping under the assumption that the objective mapping 𝐹  has 
converse 𝑚1-property. It is worth noting that the property can lead to the following conclusion 
when 𝑥𝑛 → 𝑥0, 𝑦𝑛 → 𝑦0 and 𝜆𝑛 → 𝜆0 : 

𝐹(𝑦0, 𝜆0) ≤𝐶
𝑚1 𝐹(𝑥0, 𝜆0) ⇒ 𝐹(𝑦𝑛0 , 𝜆𝑛0) ≤𝐶

𝑚1 𝐹(𝑥𝑛0 , 𝜆𝑛0) for some 𝑛0 ∈ ℕ.  

The may be not reasonable from the point of view of locally sign-preserving property of limit. 

Now, we give an example to illustrate that Theorem 3.1 is applicable, but Theorem 3.6 in [29] 
is not applicable. 

Example 3.1 Let 𝑋 = ℝ,𝑌 = ℝ2 and 𝐶 = ℝ+
2 . Let Λ = [0,1] and 𝐾: Λ ⇉ 𝑋 be defined by 𝐾(𝜆) =

{𝑥 ∈ ℝ: [−𝜆, 𝜆]} for each 𝜆 ∈ Λ. Let 𝐹: 𝑋 × Λ ⇉ 𝑌 be defined as follows: 

𝐹(𝑥, 𝜆) = (𝑥 + 𝜆, sin⁡ 𝑥) + 𝔹𝑌. 

It is not hard to check that the assumptions (i)-(iii) are satisfied in Theorem 3.1. Now, we check 
that the assumption (iv) holds. Indeed, for any 𝜆 ∈ Λ, for any 𝑥1, 𝑥2 ∈ 𝐾(𝜆) (without loss of 
generality, we assume that 𝑥1 ≤ 𝑥2 ) and for any 𝛼 ∈ [0,1], one has 

𝐹(𝛼𝑥1 + (1 − 𝛼)𝑥2, 𝜆) ≤𝐶
𝑚2 𝐹(𝑥2, 𝜆). 

Hence, 𝑆(⋅) is 1.s.c. on Λ by Theorem 3.1. However, 𝐹  does not have converse 𝑚1-property. 

Indeed, let 𝑥0 = 𝑦0 = 𝜆0 = 0 . Obviously, 𝐹(𝑦0, 𝜆0) ≤𝐶
𝑚1 𝐹(𝑥0, 𝜆0)  and there exist sequences 

{𝑥𝑛} = {
1

2𝑛
} , {𝑦𝑛} = {

1

𝑛
}  and {𝜆𝑛} = {

1

𝑛
}  such that for all 𝑛 ∈ 𝑁  with 𝐹(𝑦𝑛, 𝜆𝑛) ⋠𝐶

𝑚1 𝐹(𝑥𝑛, 𝜆𝑛) . 

Hence 𝐹 does not have the converse 𝑚1-property and so Theorem 3.6 in [29] is not applicable 
in this example. 
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