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Abstract 

This paper is devoted to investigating a multi-objective Generalized Conditional 
Gradient Method for multi-objective composite optimization problems. The proposed 
algorithm utilizes multiple-step size strategies and is evaluated through numerical 
experiments. Moreover, the effectiveness of the method is demonstrated in multi-task 
learning scenarios by testing it on the Multi-MNIST, Multi-Fashion, and Multi-Fashion-
MNIST datasets. The results demonstrate that the method performs superbly and may 
enhance the model’s generalizability in multi-task learning. 
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1. Introduction 

Multi-objective optimization (MOO) aims to simultaneously minimize (or maximize) several 
objective functions while taking into certain constraints. There will frequently be conflicts 
between different objective functions. There is no solitary solution that concurrently maximizes 
some of the objectives while they are in conflict. Finding Pareto optimal solutions (also known 
as efficient points) in these circumstances is the purpose of MOO. Multi-objective optimization 
has found successful applications in a variety of fields, including engineering, logistics, 
transportation, and medicine.  

Recent years have seen a large number of approaches to multi-objective optimization problems 
presented. The scalarization strategy [1-2] is one of the most often used techniques. It converts 
the original multi-objective problem into a scalar-valued objective function. However, choosing 
the appropriate parameters (or weights) in advance can be challenging. On the other hand, for 
some non-convex situations, scalarization approaches may produce unanticipated mistakes. [3] 
is an illustration of the inability of the scalarization approach to address issues. 

Heuristic algorithms are another prominent method [4-5]. Heuristic algorithms are a category 
of stochastic optimization techniques that replicate the process of natural development. These 
algorithms can handle most multi-objective optimization problems even problems with black-
box objective functions. However, they can cause high computational effort when expensive 
functions are considered since they are based on the search strategy of sampling by changing 
or recombining former points. Therefore, if there are some very large-scale problems, it is 
almost impossible to solve them using heuristic algorithms. Furthermore, such algorithms do 
not include any intrinsic measures of distance to convergence, such as a step length and 
descending direction, and therefore there is no clear stopping criterion. 

Many scholars pay much attention to extending single-objective optimization based on descent 
methods to multi-objective optimization in recent years [6-10]. An ordering of the importance 
of the components of the objective function vector need not be provided in these algorithms. 
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The common descent direction (i.e. this descending direction can decrease all objective 
functions) is solved in the iteration of the algorithm. In most instances, it is possible to prove 
convergence to a first-order Pareto stationary point.  

In this paper, we consider the problem  

min    𝐹(𝑥) + 𝐺(𝑥)
s. t.    𝑥 ∈ 𝐶,          

(1) 

Where 𝐹: ℝ𝑛 → ℝ𝑚 is continuous differentiable function with 𝐹 = (𝐹1, 𝐹2, ⋯ , 𝐹𝑚), 𝐺: ℝ𝑛 → ℝ𝑚 

is proper close convex function with 𝐺 = (𝐺1, 𝐺2 , ⋯ , 𝐺𝑚), and 𝐶 ⊆ ℝ𝑛 is compact convex set. 

We present a generalized conditional gradient method for multi-objective optimization 
problems to solve (1). The suggested approach simply requires the solution of a common 
descent direction through the subproblem in each iteration, followed by the solution of an 
acceptable step size for the original problem. 

This paper is structured as follows.  Section 2 introduces the required conditions for solving 
multi-objective optimization problems and proposes a generalized conditional gradient 
method for multi-objective optimization problems. Section 3 reports the results of numerical 
experiments conducted for four test problems and multi-task learning. Finally, Section 4 
presents a summary and discusses future research directions. 

2. Algorithm Framework 

In problem (1), we define the Jacobian 𝐽𝐹 of function 𝐹 ≔ (𝐹1, ⋯ , 𝐹m) that has full rank and 
Lipschitz continuous, if there exist constants 𝐿1, 𝐿2, ⋯ , 𝐿𝑚 > 0 such that  

‖𝐹𝑖(𝑥) − 𝐹𝑖(𝑦)‖ ≤ 𝐿𝑖‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶 and ∀𝑖 = 1, ⋯ 𝑚.  

Here, we set 𝐿 ≔ max{𝐿𝑖: 𝑖 = 1, ⋯ , 𝑚}.  

Let 𝐻(𝑥) = 𝐹(𝑥) + 𝐺(𝑥), then the problem (1) can be rewritten as follows: 

min    𝐻(𝑥)
     s. t    𝑥 ∈ 𝐶.

(2) 

The search direction of generalized conditional gradient method at a given 𝑥 ∈ 𝐶 is defined as 

 𝑑(𝑥) = 𝑞(𝑥) − 𝑥,  

where 𝑞(𝑥) is an optimal solution of subproblem 

min𝑣∈𝐶max𝑖=1,⋯,𝑚{∇𝐹𝑖(𝑥)⊤(𝑣 − 𝑥) + 𝐺𝑖(𝑣) − 𝐺𝑖(𝑥)}, (3) 

and we define that 

𝑞(𝑥) ∈ arg min𝑣∈𝐶 max𝑖=1,⋯,𝑚{∇𝐹𝑖(𝑥)⊤(𝑣 − 𝑥) + 𝐺𝑖(𝑣) − 𝐺𝑖(𝑥)}, (4) 

Since (3) is convex function and 𝐶 is compact convex set, (4) has an optimal solution and, as a 
result, 𝑞(𝑥) is well defined. Now, we convert (3) into the following problem 

min𝑣,𝑎    𝑎                                                     

                                       s. t.      ∇𝐹𝑖(𝑥)⊤(𝑣 − 𝑥) + 𝐺𝑖(𝑣) − 𝐺𝑖(𝑥) ≤ 𝑎, 𝑖 = 1, ⋯ , 𝑚
                                                    𝑣 ∈ 𝐶. (5)

 

Let 𝜃𝑥(𝑞) be the optimal value of (3) given by 

𝜃𝑥(𝑞) ≔ max𝑖=1,⋯,𝑚{∇𝐹𝑖(𝑥)⊤(𝑞(𝑥) − 𝑥) + 𝐺𝑖(𝑞(𝑥)) − 𝐺𝑖(𝑥)} (6) 

Subsequently, we introduce the generalized conditional gradient method for multi-objective 
optimization (GCGMMO) algorithm for addressing problem (1). The algorithm is presented in 
the following framework: 
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Generalized Conditional Gradient Method for Multi-objective Optimization 
(GCGMMO)  

1. Input: initial point 𝑥0 ∈ ℝ𝑛, iteration precision 𝜀. 

2. Output: 𝑥𝑘 , 𝐻(𝑥𝑘). 

3. for 𝑘 = 0,1, ⋯, do 

4.      Compute an optimal solution 𝑞(𝑥𝑘) and the optimal value 𝜃𝑥𝑘(𝑞) as:  

𝑞(𝑥𝑘) ∈ arg min𝑣∈𝐶 max𝑖=1,⋯,𝑚{∇𝐹𝑖
⊤(𝑣 − 𝑥𝑘) + 𝐺𝑖(𝑣) − 𝐺𝑖(𝑥𝑘)}; 

𝜃𝑥𝑘 (𝑞) ≔ max𝑖=1,⋯,𝑚{∇𝐹𝑖
⊤(𝑞(𝑥𝑘) − 𝑥𝑘) + 𝐺𝑖(𝑞(𝑥𝑘)) − 𝐺𝑖(𝑥𝑘)}. 

5.      Let  𝑑𝑘 = 𝑞(𝑥𝑘) − 𝑥𝑘 . 

6.      |𝜃𝑥𝑘(𝑞)| ≤ 𝜀 then 

7.            return 𝑥𝑘 , 𝐻(𝑥𝑘). 

8.      end if 

9.             Compute the step size 𝑡𝑘 by line search and update: 

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘𝑑𝑘. 

10. end for 

We assume that 𝜃𝑥𝑘(𝑞) ≤ 0 for all 𝑘 = 0,1, ⋯, i.e., Algorithm GCGMMO generates an infinite 

sequence {𝑥𝑘}. Owing to 𝑥𝑘 ∈ 𝐶, 𝑞(𝑥𝑘) ∈ 𝐶  and 𝑡𝑘 ∈ (0,1]  for all 𝑘 = 0,1, … , 𝐶  is a compact 
convex set,  𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘(𝑞(𝑥𝑘) − 𝑥𝑘) ∈ 𝐶. it can be concluded that {𝑥𝑘} ⊆ 𝐶 In the case of 
single-objective optimization, we can determine the exact optimal step size. Yet, it is extremely 
difficult in the case of multi-objective optimization. As a result, we investigate the convergence 
qualities of the sequence created by Algorithm GCGMMO using five distinct, well-defined, and 
realistic step sizes listed below. 

Armijo stepsize: Let 𝑡𝑘0
∈ (0,1], 𝛽 ∈ (0,1), 𝜆 ∈ (0,1), for 𝑗 = 0,1,2, ⋯,  if 

𝐻 (𝑥𝑘 + 𝑡𝑘𝑗
𝑑𝑘) ≤ 𝐻(𝑥𝑘) + 𝛽𝑡𝑘𝑗

𝜃𝑥𝑘(𝑞)𝑒, 

return 𝑡𝑘 = 𝑡𝑘𝑗
, else return that 

𝑡𝑘𝑗+1
= 𝜆𝑡𝑘𝑗

. 

Adaptive stepsize:  Define the stepsize as 

𝑡𝑘: = min {1,
𝜃𝑥𝑘(𝑞)

𝐿
‖𝑑𝑘‖2} = arg min𝑡∈(0,1] {𝜃𝑥𝑘(𝑞)𝑡 +

𝐿

2
‖𝑑𝑘‖2𝑡2}. 

Diminishing stepsize: Defined the diminishing stepsize as 

𝑡𝑘 =
2

𝑘 + 2
. 

Max-type stepsize: Let 𝑡𝑘0
∈ (0,1], 𝛽 ∈ (0,1), 𝜆 ∈ (0,1). Choose a nonnegative integer 𝑀, let 

𝑚(0) = 0 and 0 ≤ 𝑚(𝑘) ≤ min{ 𝑚(𝑘 − 1) + 1, 𝑀}, then we apply the Armijo step size rule to 
find a 𝑡𝑘 > 0 that satisfieins 

𝐻(𝑥𝑘 + 𝑡𝑘𝑑𝑘) ≦ 𝑐𝑘 + 𝛽𝑡𝑘𝜃𝑥𝑘(𝑞)𝑒, 

where 𝑐𝑘 = max0≤𝑙≤𝑚(𝑘)𝐻(𝑥𝑘−𝑙). 

Average-type stepsize: The average-type step size criterion is similar to the max-type step 
size criterion except that let 𝑝0 = 1, 𝜂 ∈ [0,1] and update 𝑐𝑘 and 𝑝𝑘 as follows: 

                           𝑝𝑘+1 = 𝜂𝑝𝑘 + 1,

𝑐𝑘+1 =
𝜂𝑝𝑘𝑐𝑘 + 𝐻(𝑥𝑘+1)

𝑝𝑘+1
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Subsequently, we propose a Selection-type algorithm that deals specifically with sequences of 
the list, in which the selection process is derived from the genetic algorithm [4]. Let 𝐼 ⊆
{1, ⋯ , 𝑚}, then the descent direction of the algorithm is as follows:  

𝑞(𝑥) ∈ arg min𝑣∈𝐶 max𝑖∈𝐼{∇𝐹𝑖(𝑥)⊤(𝑣 − 𝑥) + 𝐺𝑖(𝑣) − 𝐺𝑖(𝑥)}. 

The main algorithm framework is as follows: 

Selection-type GCGMMO 

1. Input: initial points 𝐿0 ∈ ℝ𝑛 , popsize 𝑁,  iteration precision 𝜀. 

2. for 𝑘 = 0,1, ⋯, do 

3.        Set 𝐿𝑡𝑒𝑚𝑝 = 𝐿𝑘; 

4.        for each 𝑥𝑘 in the list 𝐿𝑘  do 

5.               for 𝐼 ∈ 2{1,…,𝑚} do 

6.                     Compute 𝑞(𝑥) ∈ arg min𝑣∈𝐶 max𝑖∈𝐼{∇𝐹𝑖(𝑥)⊤(𝑣 − 𝑥) + 𝐺𝑖(𝑣) −
𝐺𝑖(𝑥)}; 

7.                     Compute the step size 𝑡𝑘 by Armijo line search and update: 

8.                     𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘(𝑞(𝑥𝑘) − 𝑥𝑘) 

9.                     Add 𝑥𝑘+1 into  𝐿𝑡𝑒𝑚𝑝; 

10.                end for 

11.       end for 

12.       Fast-non-dominated-sort 𝐿𝑡𝑒𝑚𝑝 and choose best 𝑁 points; 

13.       Set 𝐿𝑘+1 = 𝐿𝑡𝑒𝑚𝑝; 

14.       if each |θ𝑥𝑘+1(𝑞)| ≤ 𝜀 in the list 𝐿𝑘+1 

15.              return  𝐿𝑘+1; 

16.        end if 

17. end for 

Each 𝑥𝑘  in 𝐿𝑘  will generate 2𝑚 − 1 descent directions, which will make the population size 
larger after the Armijo line search. Then, the iterative points are ranked using fast non-
dominated sort in 𝐿𝑘+1, and the top 𝑁 points with the best performance are selected to enter 
the next iteration. Then the quality of the solution generated by the algorithm may be better 
through the non-dominated sorting and selection process. 

3. Numerical Experiment 

3.1. Compare with different stepsizes 

In this subsection, the proposed methods are compared to each other with some test problems. 
Note that Table 1 presents key information such as the source, variable dimensions, number of 
objectives, and geometry types of the Pareto front for each of the four selected problems. The 
approximate Pareto fronts of test problems are shown in Figure 1. 

Table 1: List of test problems 

Problem Source  𝑛   𝑚 Geometry 

Lov1 [11] 2 2 Convex 

JOS2 [12] 30 2 Concave 

JOS4 [12] 30 2 Mixed 

ZDT3 [13] 30 2 Disconnected 
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Some results can be obtained from the approximate Pareto front of the above four test 
questions: The non-dominant points obtained by the Selection-type method are the most 
uniform and can be spread throughout the approximate Pareto front. The approximate Pareto 
front distribution of other methods is worse than that of the selection method.  However, some 
points of the adaptive method are not convergent. Therefore, adding a non-dominated sorting 
process into the algorithm can improve the generation of the Pareto front. 

 

    
     (a)                                                         (b) 

    
   (c)                                                                    (d) 

Figure 1:  Approximate Pareto front: (a) Lov1; (b) JOS2; (c) JOS4; (d) ZDT3 

3.2. Multitasking learning 

This subsection applies the suggested method to Multi-Tasking Learning (MTL). An MTL 
problem is made up of 𝑚 or related tasks as a loss vector: 

𝑚𝑖𝑛𝜃𝑠ℎ,𝜃1,…,𝜃𝑚𝐿(θ𝑠ℎ, θ1, … , θ𝑚) = (𝐿1(𝜃𝑠ℎ, 𝜃1), 𝐿2(𝜃𝑠ℎ, 𝜃2), … , 𝐿𝑚(𝜃𝑠ℎ, 𝜃𝑚)), 

where 𝐿𝑖(𝜃𝑠ℎ, 𝜃𝑖) is the loss of 𝑖-th task. An MTL algorithm optimizes all tasks at the same time 

by using shared structure and information. The gradient of the model may then be updated in 
the decreasing direction of solving the subproblems. 

We created Multi-MNIST datasets from the [14] to examine the effectiveness of our method on 
Multi-Task Learning situations with different task relations. We select two pictures with 
distinct digits at random from the original MNIST dataset [15] and then combine them into a 
new image by placing one digit in the top-left corner and the other in the bottom-right corner. 
Each digit may be moved by four pixels in each direction. We may create a Multi-Fashion-MINST 
(we call it Multi-Fashion) dataset with overlap Fashion-MNIST items [16], as well as a Multi-
Fashion + MNIST (we call it Multi-Fashion-MNIST) dataset with overlap MNIST and Fashion-
MNIST items, using the same method. We have a two-objective MTL problem for each dataset: 
classify the item on the top-left (task 1) and classify the item on the bottom-right (task 2). We 
construct a LeNet [15] based MTL neural network that is comparable to the one used in [17]. 
Before training, we set the maximum epoch to 100, and then record the final training accuracy 
and test accuracy. It can be seen from Table 2 that the training accuracy of the first single-task 
training baseline in the Multi-Fashion dataset is lower than that of the conditional gradient 
method, while others are higher than that of the conditional gradient method. In the test set, 
the accuracy of all single-task training baselines is lower than that of the proposed method. This 
is because the suggested method incorporates regular terms into the model, improving the 
model's generalization ability and successfully alleviating the overfitting problem. And the 
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proposed algorithm performs well while solving multi-objective optimization problems if the 
objective functions are convex and non-differentiable. As a result, while fitting the data set, we 
recommend using regular terms in the model to increase test accuracy. 

Table 2 displays the acquired results. 

 
     (a)                                                    (b)                                             (c) 

Figure 2: Dataset:(a) Multi-MNIST; (b) Multi-Fashion; (c) Multi-Fashion-MNIST 

Before training, we set the maximum epoch to 100, and then record the final training accuracy 
and test accuracy. It can be seen from Table 2 that the training accuracy of the first single-task 
training baseline in the Multi-Fashion dataset is lower than that of the conditional gradient 
method, while others are higher than that of the conditional gradient method. In the test set, 
the accuracy of all single-task training baselines is lower than that of the proposed method. This 
is because the suggested method incorporates regular terms into the model, improving the 
model's generalization ability and successfully alleviating the overfitting problem. And the 
proposed algorithm performs well while solving multi-objective optimization problems if the 
objective functions are convex and non-differentiable. As a result, while fitting the data set, we 
recommend using regular terms in the model to increase test accuracy. 

Table 2: Train result of datasets 

Dataset task Train-base Train-acc Test-base Test-acc 

MNIST Task1 0.995 0.988 0.973 0.983 

Task2 0.996 0.983 0.974 0.978 

Fashion Task1 0.852 0.874 0.828 0.852 

Task2 0.912 0.888 0.860 0.868 

Fashion-
MNIST 

Task1 0.886 0.875 0.853 0.856 

Task2 0.995 0.978 0.969 0.975 

4. Conclusion 

This paper aims to study a generalized conditional gradient method for multi-objective 
optimization designed for multi-objective composite optimization problems. On this basis, 
Selection-type GCGMMO is constructed to generate a better quality Pareto front. Additionally, 
The proposed step size criteria are compared with the selection-type method. The results show 
that the Pareto front generated by the selection-type method is more uniform and complete. In 
addition, the proposed algorithm is applied to multi-task learning. The experimental results 
demonstrate the feasibility of the proposed algorithm. Further work is to investigate versions 
of the proposed algorithm for solving problems involving non-convex functions. 

References 

[1] I. Das, J.E. Dennis. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto 
set generation in multicriteria optimization problems, Structural Optimization, Vol. 14 (1997) No. 
1, p.63-69. 



Scientific Journal of Intelligent Systems Research                                                                                        Volume 5 Issue 4, 2023 

ISSN: 2664-9640                

186 

[2] G. Eichfelder. Scalarizations for adaptively solving multi-objective optimization problems, 
Computational Optimization and Applications, Vol. 44 (2009), p.249-273. 

[3] J. Fliege, L.G Drummond, B.F. Svaiter. Newton's method for multiobjective optimization, SIAM 
Journal on Optimization, Vol. 20 (2009) No. 2, p. 602-626. 

[4] K. Deb, A. Pratap, S. Agarwal, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE 
transactions on evolutionary computation, Vol. 6 (2002) No. 2, p.182-197. 

[5] L. Ke, Q. Zhang, R. Battiti. MOEA/D-ACO: A multiobjective evolutionary algorithm using 
decomposition and antColony, IEEE Transactions on Cybernetics, Vol. 43 (2013) No. 6, p.1845-1859. 

[6] P.B. Assunção, P.F. Orizon, L.F. Prudente. Conditional gradient method for multiobjective 
optimization, Computational Optimization and Applications, Vol. 78 (2021), p.741-768.  

[7] J. Fliege, B.F. Svaiter. Steepest descent methods for multicriteria optimization, Mathematical 
methods of operations research, Vol. 51 (2000), p.479-494. 

[8] H. Tanabe, E.H. Fukuda, N. Yamashita. Proximal gradient methods for multiobjective optimization 
and their applications, Computational Optimization and Applications, Vol. 72 (2019), p.339-361. 

[9] H. Tanabe, E.H. Fukuda, N. Yamashita. Convergence rates analysis of a multiobjective proximal 
gradient method, Optimization Letters, Vol. 17 (2023) No. 2, p.333-350. 

[10] G. Cocchi, M. Lapucci. An augmented Lagrangian algorithm for multi-objective optimization, 
Computational Optimization and Applications, Vol. 77 (2020) No. 1, p.29-56. 

[11] S. Huband, P. Hingston, L. Barone, et al. A review of multiobjective test problems and a scalable test 
problem toolkit, IEEE Transactions on Evolutionary Computation, Vol. 10 (2006) No. 5, p.477-506. 

[12] Y. Jin, M. Olhofer, B. Sendhoff. Dynamic weighted aggregation for evolutionary multi-objective 
optimization: Why does it work and how? Proceedings of the genetic and evolutionary computation 
conference (San Francisco, USA, July 7-11, 2001), Vol. 1, p.1042-1049. 

[13] E. Zitzler, K. Deb, L. Thiele. Comparison of multiobjective evolution algorithms: empirical results, 
Evolutionary Computation, Vol. 8 (2000) No. 2, p.173-195. 

[14] S. Sara, F. Nicholas, E.H. Geoffrey. Dynamic routing between capsules. In Advances in Neural 
Information Processing Systems (Long Beach, CA, USA, December 4-9, 2017), p.3856–3866. 

[15] L. Yann, B. Léon, B. Yoshua, et al. Gradient-based learning applied to document recognition, 
Proceedings of the IEEE, Vol. 86 (1998) No. 11, p.2278–2324. 

[16] H. Xiao, K. Rasul, R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine 
learning algorithms, arXiv preprint, 2017, doi: 10.48550/arXiv.1708.07747. 

[17] S. Ozan, K. Vladlen. Multi-task learning as multi-objective optimization. In Advances in Neural 
Information Processing Systems (Montréal, Canada, December 3-8, 2018), p.525–536. 

 
 
 

javascript:;

