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Abstract 

This Paper proposes a stochastic multi-objective proximal gradient algorithm designed 
to tackle non-smooth stochastic multi-objective optimization problems. The algorithm 
builds upon the single-objective stochastic proximal gradient method and multi-
gradient descent method. The algorithm is further investigated to generate the 
approximated Pareto front. Finally, the proposed algorithm is applied to a binary 
classification problem containing prediction accuracy and disparate impact to evaluate 
its effectiveness. The results demonstrate that the Pareto front generated by the 
proposed algorithm is helpful for decision-makers to balance the prediction accuracy in 
binary classification. 
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1. Introduction 

Multi-objective optimization (MOO) problems are prevalent in real-life scenarios, in which 
multiple conflicting objectives need to be addressed simultaneously. In contrast to single-
objective optimization, improving one objective may lead to a decline in the performance of 
other objectives. To tackle this issue, the concept of the Pareto optimal solution is introduced, 
which reveals the trade-offs between the different objectives. The objective function value 
corresponding to the Pareto optimal solution is referred to as the Pareto front. Analyzing the 
Pareto front assists decision-makers in balancing each objective to make informed decisions 
that align with their interests. 

According to the certainty of the parameters, MOO can be divided into deterministic multi-
objective optimization (DMOO) and stochastic multi-objective optimization (SMOO). The 
former has garnered considerable attention from scholars, leading to the development of 
various solving algorithms. Scalarization algorithms and heuristic algorithms are the primary 
approaches for solving DMOO problems, and further details on these methods can be found in 
[1-3]. However, both of them have drawbacks. The former requires prior information and 
increases the decision-making burden. The latter is difficult to obtain convergence analysis 
theoretically. Based on this, in recent years, there has been a growing interest in directly solving 
DMOO problems by drawing on single-objective optimization algorithms. This approach has 
emerged as a popular research direction in the field. The primary characteristic of these 
methods is attempting to move in a direction that simultaneously decreases all objective 
functions. In the DMOO, we can site steepest descent methods [4,5], Newton methods [6], 
proximal gradient methods [7-10], and proximal point methods [11] for unconstrained 
problems; while projected gradient methods [12], augmented Lagrangian methods [13] for 
constrained problems.  
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While many multi-objective problems in real life also involve uncertainties, such as 
transportation networks [14] and agricultural production [15]. Therefore, for SMOO, it is 
necessary to develop an optimization model and corresponding algorithms with both multi-
objective properties and stochastic properties. The primary strategies for solving SMOO 
problems are the multi-objective methods and stochastic methods. The former method can 
refer to [16] which simplifies the SMOO problem into a deterministic MOO problem and 
subsequently employs techniques in DMOO. Meanwhile, the latter strategy begins by reducing 
the SMOO problem to a single objective stochastic problem and then applying single-objective 
stochastic optimization techniques. It should be noted that stochastic methods inherit certain 
limitations of scalarization techniques employed in the DMOO. Therefore, to simplify the 
problem, it is assumed that the stochastic variables in the individual objectives are mutually 
independent.  

Recently, researchers have sought to address stochastic multi-objective optimization (SMOO) 
problems by drawing on strategies from the extension of classical scalar optimization methods 
in DMOO. These approaches often assume that stochastic parameters are independent of each 
other and then adopt multi-objective methods. As a result, both theoretical and practical 
achievements have been made in this field. [17] extended the single-objective stochastic 
gradient algorithm to multi-objective optimization, utilizing the common descent defined in the 
DMOP. Subsequently, [18] analyzed the stochastic multi-gradient method under strong 
assumptions but failed to calculate the approximation of the entire Pareto front. Later, [19] 
addressed the aforementioned limitation to study the Pareto front stochastic multi-gradient 
methods (PF-SMG) and further applied it to evaluate fairness in binary problems. Following 
this, [20] further applied PF-SMG to the analysis of accuracy-fairness with multiple sensitive 
attributes or different fairness measures. Additionally, [21] considered a stochastic alternating 
algorithm for conflicting bi-objective optimization, where each function is not necessarily 
smooth.  

The work described above primarily focuses on scenarios where the objective functions are 
smooth. It is noted that the above algorithms no longer work well when the objective functions 
involve non-smooth terms. Examples of this type can be found in machine learning, such as loss 
functions with non-smooth regularization terms, such as 𝑙1-norm. Therefore, it is essential to 
consider solving non-smooth composite SMOO problems using splitting algorithms like 
proximal gradient methods. Building upon the previous research on multi-objective proximity 
gradient algorithms (see for [7-10] details) and the exploration of stochastic single-objective 
proximity gradient algorithms (see [22] for details), this paper investigates a class of proximal 
gradient methods for SMOO and conducts a numerical experiment to evaluate the efficacy of 
the proposed methods.  

This study provides a stochastic extension of the proximal gradient algorithm in DMOO. Indeed, 
as discussed below, the primary motivation for this research is to handle non-smooth 
composite SMOO problems. An experimental result on the binary classification problem shows 
that the proposed algorithm is feasible.  

This paper is structured as follows. Section 2 introduces the problem under investigation and 
proposes a stochastic multi-objective proximal gradient algorithm. Section 3 reports the results 
of numerical experiments conducted for a binary classification problem. Section 4 finally 
presents a summary and discusses future research directions. 

2. Algorithm Framework 

This paper focuses on a stochastic multi-objective optimization problem which is characterized 
by the following structure: 
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min 𝐹(𝑥) + 𝐻(𝑥)
s.t. 𝑥 ∈ ℝ𝑛 ,       

(1) 

where 𝐹 ≔ (𝑓1(𝑥), ⋯ , 𝑓𝑚(𝑥))⊤  and 𝑓𝑖(𝑥) = 𝔼[𝑓𝑖(𝑥, 𝑤]  is a proper, continuous differentiable 
convex function; 𝐻 ≔ (ℎ1(𝑥), ⋯ , ℎ𝑚(𝑥))⊤  and ℎ𝑖(𝑥) is a proper, convex function (not 
necessarily differentiable); ℝ𝑛  represents a feasible region without uncertainty.  

Now we draw on the stochastic multi-gradient method documented in and construct 

its corresponding expression for the differentiable part 𝐹(𝑥) of problem (1), that is  

min𝜆∈ℝ𝑛 ‖∑ 𝜆𝑖𝑔𝑖(𝑥𝑘 , 𝑤𝑘)
𝑚

𝑖=1
‖

2

  

   s.t. 𝜆 ∈ 𝛥𝑚 ,                        

(2) 

where 𝑔𝑖(𝑥𝑘, 𝑤𝑘) is the approximate estimate of 𝛻𝑓𝑖(𝑥𝑘). The optimal value of (2) is defined as 
𝜆𝑔(𝑥𝑘 , 𝑤𝑘), and the convex combination coefficients depend on 𝑥𝑘 and 𝑤𝑘. Then the common 
descent direction of 𝐹(𝑥) is defined by 

𝑔(𝑥𝑘 , 𝑤𝑘) = ∑ 𝜆𝑖
𝑔

(𝑥𝑘 , 𝑤𝑘)𝑔𝑖(𝑥𝑘, 𝑤𝑘)
𝑚

𝑖=1
. (3) 

Subsequently, we introduce the stochastic multi-objective proximal gradient (SMPG) algorithm 
for addressing problem (1), which is presented in the following framework: 

Stochastic Multi-Objective Proximal Gradient (SMPG) Algorithm 

1. Input an initial point 𝑥0 ∈ ℝ𝑛  and a step size sequence {𝑡𝑘}𝑘∈ℕ > 0. 

2. for 𝑘 = 0,1, …, do 

3.     Compute the approximate estimates 𝑔𝑖(𝑥𝑘 , 𝑤𝑘) of 𝛻𝑓𝑖(𝑥𝑘). Solve problem 
(2) and (3)  

    to obtain the common descent direction 𝑔(𝑥𝑘 , 𝑤𝑘) for 𝐹(𝑥) with 
𝜆𝑔(𝑥𝑘, 𝑤𝑘). 

4. Solve the following subproblem:  

𝑥𝑘+1 ∈ argmin {𝐻(𝑥) +
1

2𝑡𝑘
‖𝑥 − 𝑥𝑘 − 𝑡𝑘𝑔(𝑥𝑘 , 𝑤𝑘)‖2𝑒}. 

5. Set 𝑥𝑘 = 𝑥𝑘+1. 

6 end for 

The framework of SMPG is borrowed from the single-objective proximal gradient algorithm, 
which includes both gradient-like steps and proximal-like steps. The first step utilizes the 
stochastic multi-objective multi-gradient method in [19] to obtain the common descent 
direction for the differentiable part. 

Further, we draw on the Pareto Front stochastic multi-gradient algorithm developed by [19] 
The algorithm framework corresponding to SMPG to generate the entire Pareto front is  

Pareto-Front Stochastic Multi-Objective Proximal Gradient (PF-SMPG) 
Algorithm 

1. Given a list of starting points 𝐿0, Choose parameters 𝑟, 𝑝, 𝑞 ∈ ℕ. 

2. for 𝑘 = 0,1, …, do 

3.        Set 𝐿𝑘+1 = 𝐿𝑘 . 

4.        for each 𝑥 in the list 𝐿𝑘+1 do 

5.               Add 𝑟 perturbed points to the list 𝐿𝑘+1 from a neighborhood of 𝑥. 

6.        end for 

7.        for each point 𝑥 in the list 𝐿𝑘+1 do 

8.               for 𝑡 = 1, … , 𝑝 do 

9.                     Apply 𝑞 iterations of the SMPG algorithm starting from 𝑥. 
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10.                     Add the final output point 𝑥𝑡 to the new list 𝐿𝑘+1. 

11.               end for 

12.       end for 

13.       Remove all the dominated points from 𝐿𝑘+1. 

14. end for 

Remark 1 Since stochastic optimization presents a challenge in determining a suitable stopping 
criterion. Thus PF-SMPG algorithm employs either the maximum number of iterations or the 
maximum number of points on the Pareto frontier as the termination criterion.  

3. Numerical Experiment 

3.1. Stochastic Bi-Objective problem 

In the field of machine learning, achieving fairness and prediction accuracy can be a challenging 
task. Typically, the goals of maximizing prediction accuracy and maximizing fairness conflict 
with each other. This is because the prediction model may heavily rely on sensitive attributes 
like gender, race, and age, which could lead to biased predictions for certain groups. Therefore, 
fair machine learning needs to strike a delicate balance between maximizing prediction 
accuracy and ensuring fairness for all groups. The Pareto front generated by solving this 
optimization problem represents the possible trade-off between accuracy and fairness. 
Ultimately, this approach enables us to design fair machine-learning models that reduce bias 
while maintaining high levels of prediction accuracy. Referring to [23], this paper selects 
disparate impact as fairness criteria. 

In our research context, the training dataset comprises the non-sensitive feature vector 𝑍, a 
binary sensitive attribute 𝐴 and binary labels 𝑌. Given access to 𝑁 samples {𝑧𝑖 , 𝑎𝑖, 𝑦𝑖}𝑖=1

𝑁 . Let a 
binary predictor 𝑌̂ = 𝑌̂(𝑍; 𝑥) ∈ {−1, +1} be a function of the parameters and solely based on 
the non-sensitive features 𝑍. As mentioned above, the trade-off between predictive accuracy 
and fairness may be mathematically formulated as a stochastic bi-objective optimization 
problem, which can be expressed as follows: 

min (𝔼[ℓ(𝑌̂(𝑍; 𝑥), 𝑌)], CV (𝑌̂(𝑍; 𝑥)))
⊤

. (4) 

To simplify the experiment, one can approximate the first objective using an empirical logistic 
regression loss, which is expressed as 

𝑓1(𝑐, 𝑏) =
1

𝑁
∑ log (1 + exp(−𝑦𝑖(𝑐𝑇𝑧𝑖 + 𝑏)))

𝑁

𝑖=1
. (5) 

Actually, (5) serves as an indicator of prediction accuracy. Here we add a regularization term 
𝜆1 2⁄ ‖𝑐‖1 to avoid over-fitting. The second objective in (4) is the CV score which measures 
disparate impact. CV score can be approximated by the 

𝑓2
𝐷𝐼(𝑐; 𝑏) = (

1

𝑁
∑ (𝑎𝑖 − 𝑎̅)(𝑐⊤𝑧𝑖 + 𝑏)

𝑁

𝑖=1
)

2

, (6) 

where 𝑎𝑖  is the expected value of 𝑖-th sensitive attribute and 𝑎̅  is an approximated value of 
using N samples. 𝜆2 2⁄ ‖𝑐‖1  can be added to (6) to decrease the estimation error. Thus, we 
actually solve a stochastic bi-objective optimization problem described below.  

min (𝑓1(𝑐; 𝑏) +
𝜆1

2
‖𝑥‖1 , 𝑓2

𝐷𝐼(𝑐; 𝑏) +
𝜆2

2
‖𝑥‖1)

⊤

. (7) 

3.2. Numerical Results 

Some details of the numerical experiment for solving the problem (7) are as follows: 
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(a) The dataset consisted of two non-sensitive features and one sensitive feature, where gender 
was designated as the sensitive feature. A value of 0.0 for the sensitive feature denoted 
membership in the female group, while a value of 1.0 indicated membership in the male group. 

(b) The initial step size is set as 2, followed by step size decay every 200 iterations. 𝜆1 and 𝜆2 
are set to 2 × 10−2. Additionally, the maximum number of iterations and non-dominated points 
in the list are limited to 1000 and 1500, respectively. 

The experimental results are shown in Figure 1. Figure 1(a) displays the Pareto front obtained 
by the PF-SMPG algorithm, revealing the inherent trade-off between accuracy and fairness. 
Figure 1(b) illustrates that with an increase in 𝑓2

𝐷𝐼 , the percentage of high-income females 
declines, indicating that predictors with high accuracy are discriminatory against females. 
Based on the findings in Figure 1(c), we can conclude that there is a positive correlation 
between the value of 𝑓2

𝐷𝐼 and the CV score for this dataset. In Figure 1(d), the X-axis range is in 
the vicinity of 5% which reveals that reducing the variable by approximately 5% can eliminate 
differential effects on accuracy. 

             
                                             (a)                                                                                           (b) 

             
                                             (c)                                                                                           (d) 

Figure 1: Trade-off results for synthetic dataset 

4. Conclusion 

This paper aims to study a stochastic multi-objective proximal gradient algorithm designed to 
tackle non-smooth stochastic multi-objective optimization problems. On this basis, PF-SMPG is 
constructed to generate the whole Pareto front. The proposed algorithm is then applied to a 
binary classification problem, and experimental results demonstrate its feasibility. Notably, 
given the prevalence of non-convex objective functions in deep learning neural networks, 
further exploration of related versions of SMPG algorithms to address these issues is crucial for 
future research.  
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