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Abstract 

The event-triggered differentially private consensus problem with the noise parameter 
is investigated by giving the detailed analysis about convergence, accuracy, privacy and 
optimal variance. An additional noise parameter can adjust the size of the added noise 
flexibly. The controller with absolute information can reduce the calculation load. 
Moreover, we use the rigorous definition of infimum to prove optimal variance, which is 
a new method. Numerical results are provided to illustrate the feasibility of the proposed 
mechanism and the correctness of the theoretical results. 
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1. Introduction 

With the development of society, more and more attention has been paid to privacy protection. 
Due to the rigorous formulation and proven security properties, the mechanism of differential 
privacy has been extensively studied when it was first introduced in [1]. In the application [2] 
of differential privacy to privacy protection, the data to be processed can be mainly divided into 
two categories: numeric and non-numeric. Laplacian mechanism and Gaussian mechanism are 
generally adopted for numeric queries, while exponential mechanism is adopted for non-
numeric queries. Besides, Laplacian mechanism and exponential mechanismcan preserve ϵ-
differential privacy, while Gaussian mechanism can preserve (ϵ, δ)-differential privacy. For ϵ-
differential privacy, the parameter ϵ represents the degree of the privacy protection, and a 
smaller value of ϵ can guarantee a stronger privacy. For (ϵ, δ)-differential privacy, the 
parameter ϵ also represents the privacy degree and δ represents the probability of violating the 
privacy. When we set smaller values of ϵ and δ, we can get a higher privacy. Note that ϵ-
differential privacy usually can provide a stronger privacy  than (ϵ, δ)-differential privacy. For 
all kinds of mechanisms, the literature [3] gives the general properties of differential privacy 
and the basic conditions of the noise which guarantees differential privacy. Further, Huang [4] 
adds an independent and exponentially decaying Laplacian noise to the consensus process who 
firstly combines differential privacy with the average consensus. For preserving the privacy of 
initial states, Manitara [5] only gives the condition to make the initial state of one agent can be 
exactly recognized by the others, while Mo [6] provides a quantitative condition to estimate it 
perfectly. What’s more, Nozari [7], [8] show that any differentially private algorithm can’t 
achieve exact average consensus but achieve average consensus in expectation. To avoid real-
time communication and controller updates frequently, Hermann [9] compares the properties 
of event-triggered and time-triggered distributed real-time systems, which shows that each 

agent i sends messages to neighbors if it satisfies the event-triggered condition, while the 
activities are initiated periodically at predetermined points in a time-triggered system. We can 
find that the event-triggered mechanism is more flexible than the time-triggered mechanism. 
On the other hand, the concept of measurement error [10] is firstly introduced into the 
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eventtriggered mechanism. More references about event-triggered can be seen in [11], [12], 
[13], [14]. Recently, Gao [15] firstly adopts the event-triggered scheme to the differentially 
private consensus algorithms 
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where {1,2, , }i N , ( )iu t  is the controller and Ni is the neighbor set of agent i . ( )i t  is the 

internal state of agent i , ( )ix t  is the pre-transmitted messages of agent i  sending to its 

neighbors, 0h   is the step size and 0is   is the noise parameter of agent i . ( )i t  is the 

random noise, which obeys the Laplacian distribution Lap(ciqi(t)) with ( ) (0,1)iq t   and the 

positive constant ic . ( )
ki

i

i t and ( )
ki

i

i t represent the internal state and the random noise of agent 

i  at its event time, respectively. ( )
ki

i

ix t  represents the transmitted messages of agent i  at the 

last event times. 

The algorithm (1) with the additional noise parameter makes measurement error 
automatically reset to zero when an event is triggered and it has better universality. Specifically, 
if all agents no longer need privacy preservation, it will degenerate to a based event-triggered 

consensus algorithm by making all 0, {1,2,3, , }is i N=   . Here, it’s worth pointing out that 

( )iu t  uses the relative information. 

More recently, Wang [16] gives a new algorithm to use the absolute information. It can be 
expressed as 
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where 0 , 1i i   . Comparing (2) with (1), it is not difficult to find that the algorithm (2) can 

reduce the computation load between neighbors. The system (2) without the noise parameter 
means that the noise must be added, and the size of the noise cannot be adjusted. However, 
noise may not be needed in a particular environment. 

In this paper, we design a new algorithm by adding si into the system (2) 
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which can be seen to combine the advantages of algorithm (1) and algorithm (2). Because we 
design the controller with absolute information, the execution efficiency is improved compared 
with algorithm (1). Moreover, the addition of noise parameter also makes our system more 
universal. Under the premise of obeying the Laplacian distribution, we can control the size of 
added noise. 

To better investigate this algorithm (3), the probability density function, probability, 

expectation and variance of a random variable X are denoted by ( )f X , ( )P X , ( )E X  and 

( )V X . 2[ ] [ ] [ ] [ ]V X E X E X E X= − . ~ ( )X Lap b  means that a zero mean random variable X

obeys the Laplacian distribution with 
2[ ] 2V X b= . The probability density function is 
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= . Let { , , }G V E A=  be an undirected and connected communication graph, in 

which {1,2, , }V N=  is the node set, E V V   is the edge set and ( )ij N NA a =  is the adjacency 

matrix of G. The neighbor set of agent i is defined as  | ( , )iN j V i j E=   . We don’t consider 

self-loop in this paper, which means 𝑎𝑖𝑖 = 0. The Laplacian matrix ( )ij N N
L l


=  associated with 

the adjacency matrix A  is defined by ij ijl a= − , i j , 
1,

N

ii ijj j i
l a

= 
= . We order the eigenvalues 

of the Laplacian matrix in the increasing order as 1 20 ( ) ( ) ( )NL L L  =    . 

Next, we propose the event-triggered condition to determine the next event time of the 
algorithm (3) as follows  

                        1 inf{ : , ( ) 0},
i i

i i

k k it t t t f t+ =  =                                                  (4) 

where ( )ie t  is the measure error with ( ) ( ) ( )
i

i

i i k ie t x t x t= − and 0 1i  . We choose ”=” in the 

event-triggered condition, which is similar to Xiong [17]. According to ( ) ( ) ( )
i

i

i i k ie t x t x t= −  we 

can know that ( ) ( ) ( )
j

j

j j k je t x t x t= − . Substituting ( ) ( ) ( )
j

j

j k j jx t x t e t= +  into the first equation of 
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                                                    (6) 

Next,we can get the vector form for this system as follows 
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where 1 2{ , , }Ndiag   = , 1 2{ , , }Ndiag s s s = , 1 2{ , , }NS diag s s s= , 

1 2( ) ( ( ), ( ), , ( ))T

Nt t t t   = , 1 2( ) ( ( ), ( ), , ( ))T

Nt t t t   =  and 1 2( ) ( ( ), ( ), ( ))T

Nx t x t x t x t= . 

Note that here we assume ( )= ij N N
A a


is a doubly stochastic square matrix and 0 1ija  , which 

means that 
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where = (1,1, ,1)T
1 . 

Remark 1. Due to the algorithm (3) has the noise parameter is , we can adjust the noise level 

at any time. Furthermore, Our event-triggered condition (4) is more efficient that only depends 
on local information and local parameters of agent i , which is different from [15] and [16]. 

The remaining of this paper is organized as follows. Firstly, we give convergence analysis, 
accuracy analysis, differential privacy analysis and optimal variance discussion in section 2. 
Followed in section 3, we provide some simulations to support our results. Finally, we conclude 
this paper in section 4. 

2. Main Results 

In this section, we will explain the rationality of the proposed algorithm (3) from four aspects, 
such as convergence, accuracy, privacy and optimal variance.  
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2.1.  Convergence Analysis 

In the subsection, we will analyze the convergence of multiagent system from two aspects. On 
the one hand, it is proved that the agents can achieve mean square convergence by constructing 
a Lyapunov function, and a sufficient condition for algorithm (3) to reach mean square 
asymptotic convergence is proposed. On the other hand, the convergence rate of the multi-
agent system is calculated according to the definition, and how the parameters in algorithm (3) 
affect the convergence 

rate of the agents are shown. 

Definition 1. (Mean Square Consensus [4]):  The agents are said to reach consensus in mean 

square if for any agents , {1,2, , }i j N , ( )
2

lim [ ( ) ( ) ] 0i j
t

E t t 
→

− =  holds. 

Theorem 1. The mechanism described in (3) achieves the mean square asymptotic 

convergence for all agents if 
1ˆmax[ (1 ) ] 1i i i   −+ −   holds. 

Proof: Firstly, we construct a Lyapunov function 
2

1

1
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2
i

N
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P t a t t 
= 

= −  which can be 

rewritten as 
1

( ) ( ) ( )
2

TP t t L t = . According to the event-triggered condition (4), we have 

                          ( ) ( ( ) ( )),e t x t e t= +                                                          (9) 

where  1 2
ˆ ˆ ˆ, ,..., Ndiag   = , with ˆi i =  . We can rewrite (9) as 

                           1( ) ( ) ( ).e t I x t −= −                                                         (10) 

Substituting (10) into (7), we can get 
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In order to make the complicated derivation more simple in the description , we make a simple 

substitution for the parameters. Let 1( )H I A −= − . Then ( )A I H H H  = − = − . 
1 1=((I ) A ) (I )T TH A   − −− = − , so (I )=T T TA H H H  = − − . Therefore, (12) can be 

rewritten as 
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For  , 1,2, ,i j N  , it follows from the literature [15] that ( )i t  and ( )i t  are independent of 

each other, ( )i t  and ( )j t  are also independent of each other for any i j  . Moreover,

[ ( )] 0iE t =  holds. 
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where ( )N L  is the maximum eigenvalue of the Laplacian matrix. If we can guarantee that 
1ˆmax[ (1 ) ] 1i i i   −+ −  , the first term of (14) will converge to 0 as t → . Since 

2 2 2[ ( )] [ ( )] 2 t

i i i iE t V t c q = = and 0 1iq  , so we have 
2[ ( )] 0iE t →  as t → . Furthermore, the 

second term of (14) converges to 0 as t → . Therefore, the algorithm (3) achieves the mean 
square asymptotic convergence as t → . 

The convergence rate is a very important scale for the convergence of multi-agent system, we 
can calculate the convergence rate to understand the internal relationship between the 
parameters of multi-agent system and convergence. The defination of convergence rate is given 
as follows. 

Definition 2. (Convergence Rate) [6]: We define the exponential mean-square convergence 
rate as 
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When 0 1Q  , the system will reach mean square convergence, when 1Q  , the system can’t 
reach mean square convergence. 

Now, according the definition 2, we compute the convergence rate Q. 
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Therefore, we can get the convergence rate 
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2.2.  Accuracy Analysis 

In the subsection, we prove that the weighted average of an agent will converge to the weighted 
average of the agent’s initial state information by combining the relevant theoretical knowledge 
of probability theory, and we propose a sufficient condition for an agent to achieve (p, r)-
accuracy. 

Definition 3. (Accuracy) [4]: For any initial (0) , a randomized mechanism is said to achieve 

( , )p r -accuracy if every execution converges to a state with probability at least 1 p− . 

Theorem 2. Set 
1

1
i

i
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−

, if ˆ(1 )(1 )i i i  = − − , the algorithm (3) achieves 
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 −
 



-accuracy for any (0,1)p . 

Proof: It follows from (11) that 
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which can be written in the distributed form as 
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2.3.  Differential Privacy Analysis 

In the subsection, we show that the observation sequence of any given two sets of δ- adjacent 
data sets will be indistinguishable after the action of algorithm (3), and then it is proved that 
the algorithm (3) can guarantee the ϵ-difference privacy of agent’s initial state by combining 
probability theory and triangle inequality. 

Definition 4. (Differential Privacy) [4]: For any given pair of δ-adjacent initial states (1) (0) , 
(2) (0) , the system is said to preserve ϵ-differential privacy, if 

         (1) (2)lg( ( )) lg( ( ))P A t e P A t     

holds, where lg( )A   represents the execution of the algorithm (3), and Θ denotes the state 

domain of global execution. 

Given 0  , a pair of  -adjacent initial states (1) (0) , (2) (0) is considered as follows 

                        
0(2) (1)

0

, ,
(0) (0)

0, .
i i

if i i

if i i


 

=
−  


                                            (27) 

Two groups of random noise 
(1) ( )i t  and 

(2) ( )i t  are designed as follows 

                            

(1)

0(2)

(1)

0

( ) , ,
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( ), .
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st
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+ =
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                                             (28) 

Proposition 1. According to (27) and (28), for {0,1, }t , we have 
(2) (2)( ) ( )i ix t x t=  for 

{1,2, , }i N  and 

                           

(1)

(2) 0

(1)

0

( ) , ,
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 − =
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                                                   (29) 

Proof: Take 00,t i i= = , we have 
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If 00,t i i=  , we have 

                            

(2) (2) (2)

(1) (1)
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(0) (0)
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= +
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                                                   (31) 

Thus, when 0, ,t i=   we have 𝑥𝑖
(2)(𝑡) = 𝑥𝑖

(1)(𝑡) for any agents. 

Now, for 0t t=  , we assume that 
(2) (1)( ) ( )i ix t x t = , i , and 
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Next, take 01,t t i i= + = , we have 
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thus, 

                          
0 0 0

(2) (1) 1( 1) ( 1) ,t

i i it t   + + = + −                                                      (34) 

and we have 
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                                (35) 

Therefore, we have 𝑥𝑖
(2)(𝑡) = 𝑥𝑖

(1)(𝑡) for ∀ i by using mathematical induction. In other words, 

the observation sequence of any given two sets of δ-adjacent data sets will be indistinguishable 
after the action of algorithm (3). 

Theorem 3. For ( ,1)i iq  , the mechanism guarantees ϵ-differential privacy with 

( )

i
i

i i i i

q

s c q



=

−
and max i

i
 = , {1,2, , }i N . 

Proof: According to the Proposition 1 and the second equation of algorithm (3), we find that the 

privacy calculation of state 
(1) ( )i t  and

(2) ( )i t  can be converted into the privacy calculation of 

noise 
(1) ( )i t  and 

(2) ( )i t , which obey Laplacian distribution. And, we have 

                      ( )

( ) ( ) ( )

( 1)
( )

lg( ( ) ) lim ( ( )) ( ),N t
R tt

P A t f t d t


    +
→

 =                           (36) 

where lg( )A   represents the execution of the algorithm (3), Θ denotes the state domain of 

global execution, 1,2 =  ( ) ( )( ) lg( ( ) )R t A t =  and ( 1)N tf +  is the ( 1)N t + -dimensional joint 

Laplacian probability distribution function given by 

                       ( 1)

1 0

( ( )) ( ( ); ( )).
N t

N t i i

i j

f t L j b j +

= =

=                                           (37) 

Based on (36) and (37), we can get 
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According to (38) and 
0 0

( ,1)i iq  , when t → , we have 

                          0

0 0 0 0
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Then intergrating the both sides of (39), we obtain the probability 

                        
0

(1) (2){ lg( ( )) } exp( ) lg( ( )) ,iP A t P A t                                     (40) 
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where
0

0

0 0 0 0
( )

i

i

i i i i

q

s c q



=

−
, which means that (3) achieves 

0i
 -differential privacy. We need to 

notice that the agent i0 can be any agents. Consequently, the algorithm is ϵ-differential private 

with max i
i

 =  , and a smaller value of ϵ can guarantee a stronger privacy. 

2.4.  Optimal Variance Discussion 

According to the (25) and ,
( )

i
i

i i i i

q

s c q



=

−
, we have an explicit privacy-accuracy trade-off 

between V[∑ �̃�(𝑘)]∞
𝑘=0  and i , where 
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In the subsection, we consider as cost function of the variance of the agents’ convergence point 

                       
2

2 2 2
1

( , , ) 2 .
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N
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Next, we will optimize this trade-off. 

Theorem 4. For the adjacent bound δ > 0 and the given privacy level ϵi, the optimal value of 
the variance of the agents’ convergence point is 
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1 1

1 1
2 inf 2 ,
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N N
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where the privacy level ϵi can be fixed according to the agents’ privacy requirements. 

Proof: For 0 1i iq   , let  

                            
2

2 2
( , )=

(1 )( )

i
i i

i i i

q
q

q q
 

− −
                                                      (44) 

To prove (43), we first show that inf ( , ) 1i iq  =  as Fig.8. It is sufficient to show that for any 

0  , there exist 0  and 0q  satisfing 0 00 1q    such that 

                         0 0( , ) 1.q   +                                                                  (45) 

To this end, for any 0  , let 0
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Furthermore, for 00 1  , due to the arbitrary of  , there is 0ak k  such that 00 1k  . 

Now, let 0 0q k= , then 0 00 1q   . Thus, we have  
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Note that 
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 , then it follows from (46) that * 1  . So, for any 

*

00    , a direct calculation from (46) and (47) shows that  
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which means that (45) holds and the proof is completed. 

Remark 2. We give the optimal selection of some parameters to minimize the variance, and we 
prove it by using the definition of infimum, which is more rigorous and is different from the 
previous method. 

3.  Simulation Example 

In this section, some numerical results are provided to illustrate the feasibility of the proposed 

algorithm (3) and the correctness of the theoretical results. The parameters are set 0.8i = ，

0.02i = ， 5i = ， ˆ 0.9i = ， 0.2ic = ， 0.86iq = ，  where {1,2, , }i N . In this paper, we 

consider a undirected and connected network with six agents, the initial state information of 

agents are given as ( ) ( )0 0.04,0.03,0.02, 0.02, 0.03, 0.04 = − − − . Then, the topology is shown in 

Fig.1, which is an octahedron designed to describe the state information transfer between six 
agents. The weight matrix of network and the Laplacian matrix are as follows 

0 0.2 0.2 0.4 0.1 0.1

0.2 0 0.2 0.1 0.2 0.3

0.2 0.2 0 0.2 0.2 0.2

0.4 0.1 0.2 0 0.2 0.1

0.1 0.2 0.2 0.2 0 0.3

0.1 0.3 0.2 0.1 0.3 0

A

 
 
 
 
 
 
 
 
 
  

=

,

1 0.2 0.2 0.4 0.1 0.1

0.2 1 0.2 0.1 0.2 0.3

0.2 0.2 1 0.2 0.2 0.2

0.4 0.1 0.2 1 0.2 0.1

0.1 0.2 0.2 0.2 1 0.3

0.1 0.3 0.2 0.1 0.3 1

L

− − − − − 
 
− − − − −
 
 − − − − −

=  
− − − − − 
 − − − − −
 
− − − − −  . 

Fig.2, Fig.3 and Fig.4 show the state trajectory ( )i t  of 6 agents with the different is . We find 

that the greater the noise parameters of the system, the greater the disturbance caused. When 
the noise added to the system is too large, although it can play a good role in protecting privacy, 
it may lead to data distortion. Therefore, it is very necessary to select the appropriate size of 
noise. The differential privacy mechanism adopted in this paper make the agent cannot achieve 
accurate convergence, because there is always random noise in the system to disturb the multi-
agent system. However, we can find that there is a moment T , the trajectory of all agents’ state 
information will approach infinitely to a random variable as t T , which will randomly fall in 
the vicinity of the weighted average value of the agent’s initial state information with limited 
disturbance variance. Since the random noise we added obeys the Laplacian distribution and is 
expected to be 0, that is to say, although the system cannot achieve exact convergence, it can 
achieve convergence to a constant in expectation, where the constant is the weighted average 
of the initial state information of the agents. Fig.5, Fig.6 and Fig.7 show the evolution of the 

function ( )P t  with the different is . It is not difficult to find that ( )P t → 0 as t → , which means 

that the algorithm (3) achieves the mean square asymptotic convergence. Fig.8 shows that 
( , )i iq  approaches its infimum 1 as 0i → , 0iq → . 
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Fig. 1. The weighted interaction network with 6 agents. 

 

Fig. 2. State trajectory ( )i t of 6 agents with 0.99is = . 

 

Fig. 3. State trajectory ( )i t  of 6 agents with 0.5is = . 



Scientific Journal of Intelligent Systems Research                                                                                        Volume 5 Issue 2, 2023 

ISSN: 2664-9640                

83 

 

Fig. 4. State trajectory ( )i t  of 6 agents with 0is = . 

 

Fig. 5. Evolution of the function ( )P t  with 0.99is = . 

 

Fig. 6. Evolution of the function ( )P t  with 0.5is = . 
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Fig. 7. Evolution of the function ( )P t  with 0is = . 

 

Fig. 8. The graph of the function ( , )i iq  . 

4.   Conclusion 

In this paper, we study the event-triggered differentially private consensus with the noise 
parameter. The new algorithm not only preserves the privacy of each agent’ initial state but 
also improves the execution efficiency of network. We prove our algorithm can achieve the 
mean square asymptotic convergence by constructing a Lyapunov function. Futhermore, we 
combine knowledge of probability theory to give the accuracy analysis. What’s more, according 
to the mathematical induction, we prove two observation sequences are indistinguishable 
when the initial states of agents are δ-adjacent and analize the differential privacy. Last but not 
least, we select the optimal parameters and prove it with the rigorous definition of infimum. Of 
course, the space for research is still very large, we can add the time-delay into system. 
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