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Abstract 

This review paper aims to provide a comprehensive overview of existing research on 
highway emergency facility locating models and algorithms. The paper discusses the 
significance of effective emergency management in highway systems, outlines the 
primary objectives of emergency facility location, and presents a taxonomy of 
optimization models and algorithms. Furthermore, the paper concludes with 
recommendations for future research directions and potential applications. 
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1. Introduction 

Highway emergency response planning[1] is a critical aspect of transportation and public safety 
management. Efficient and effective emergency response systems play a vital role in mitigating 
the impact of various types of emergencies, such as traffic accidents, natural disasters, and 
hazardous material spills. These emergencies can cause significant disruptions to 
transportation networks, lead to substantial economic losses, and, most importantly, pose a 
threat to human life. The primary goal of highway emergency response planning is to ensure 
the timely and adequate provision of emergency services, such as medical assistance, 
firefighting, and hazardous material containment, to minimize the adverse effects of 
emergencies on society. 

An essential component of highway emergency response planning is the strategic decisions 
related to the location of emergency facilities. Emergency facility location decisions involve 
determining the optimal placement of facilities, such as hospitals, fire stations, and hazardous 
material response centers, to maximize their accessibility and coverage[2-5]. The optimization 
of these decisions is crucial for ensuring the prompt and effective response to emergencies and 
the efficient utilization of available resources. 

Over the past several decades, numerous mathematical models and optimization algorithms 
have been developed to address the complex and challenging problems of emergency facility 
location. These models and algorithms have been applied in various emergency response 
contexts and have contributed to significant improvements in the efficiency and effectiveness 
of emergency response systems. However, as the scale and complexity of transportation 
networks continue to grow, and the frequency and severity of emergencies continue to increase 
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due to factors such as urbanization, climate change, and technological advancements, new 
challenges and opportunities are emerging in the field of highway emergency facility locating. 

In this review paper, we provide an extensive overview of the state-of-the-art models, 
algorithms, and methods in the field of highway emergency facility locating. We also provide 
recommendations for future research directions and applications to contribute to the 
continued advancement of the field. 

2. Taxonomy of Optimization Models and Algorithms 

2.1. Emergency Facility Location Models 

In this section, we provide a further extended discussion of the four primary categories of 
emergency facility location models: deterministic, probabilistic, robust, and dynamic models. 
These models play a critical role in determining the optimal location of emergency facilities, 
ensuring timely response and efficient resource allocation during crisis situations. 

 

Table 1  Taxonomy of optimization models 

Emergency facility location models  References 

Deterministic models 
MCLM Ansari et al. (2022) 

LSCP Aboolian et al. (2021) 

Probabilistic models 
SMCLM  

SLSCP  

Robust models 
RMCLM Alinaghian et al. (2017) 

RLSCP  

Dynamic models 
DMCLM Tanaka et al. (2011) 

DLSCP Alizadeh and Tatsushi (2020) 

 

2.1.1. Deterministic Models 

Deterministic models assume that all parameters, such as demand, travel time, and service 
capacity, are known with certainty. These models are relatively simple and computationally 
efficient, making them a popular choice in the literature. Some additional deterministic models 
include: 

Maximum Covering Location Model (MCLM)[6-9]: This model aims to maximize the total 
demand covered within a pre-specified service distance or time by placing a fixed number of 
facilities. The model assumes that each demand point can be served by any facility within the 
service distance or time. 

Location Set Covering Problem (LSCP)[10-14]: This model seeks to minimize the number of 
facilities required to cover all demand points at least once, without considering service distance 
or time constraints. It assumes that each facility can serve an unlimited number of demand 
points. 

2.1.2. Probabilistic Models 

Probabilistic models incorporate uncertainty in the demand, travel time, and/or facility service 
capacities by considering probability distributions or stochastic parameters. These models can 
provide more realistic solutions, as they account for the inherent uncertainty in real-world 
situations. Additional probabilistic models include: 

Stochastic Maximum Covering Location Model (SMCLM): This model extends the MCLM by 
considering the probability of demand point coverage, which depends on the stochastic nature 
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of demand or travel time. The objective is to maximize the expected total demand covered 
within the service distance or time. 

Stochastic Location Set Covering Problem (SLSCP): This model generalizes the LSCP by 
introducing uncertainty in demand or travel time. The goal is to minimize the number of 
facilities required to cover all demand points with a pre-specified probability. 

2.1.3. Robust Models 

Robust models are designed to provide solutions that perform well under various scenarios or 
in the presence of uncertainty. These models can be particularly useful in emergency situations, 
where the exact nature of the uncertainty may be unknown or difficult to predict. Additional 
robust facility location models are: 

Robust Maximum Covering Location Model (RMCLM)[15]: This model seeks to maximize the 
total demand covered within the service distance or time in the worst-case scenario, ensuring 
system resilience to unforeseen events. 

Robust Location Set Covering Problem (RLSCP): This model aims to minimize the number of 
facilities required to cover all demand points at least once in the worst-case scenario, 
guaranteeing a robust solution that maintains service coverage even under adverse conditions. 

2.1.4. Dynamic Models 

Dynamic models consider the temporal dimension, accounting for changes in demand, travel 
time, or facility capacities over time. These models can provide more accurate and adaptive 
solutions for emergency facility location, as they can better represent the dynamic nature of 
real-world situations. Additional dynamic models include: 

Dynamic Maximum Covering Location Model (DMCLM)[16]: This model extends the MCLM by 
considering temporal variations in demand, travel time, or facility capacities, aiming to 
maximize the total demand covered within the service distance or time over time. 

Dynamic Location Set Covering Problem (DLSCP)[17-20]: This model accounts for time-varying 
demand, travel time, or facility capacities in the LSCP, with the goal of minimizing the number 
of facilities required to cover all demand points at least once over time. 

These extended discussions provide a comprehensive overview of various emergency facility 
location models, which are essential in the planning and management of emergency response 
systems. By understanding the differences among deterministic, probabilistic, robust, and 
dynamic models, researchers and practitioners can select the most appropriate model for their 
specific problem and context. Each of these models serves a different purpose and provides 
unique insights into the optimal location of emergency facilities. 

Deterministic models offer a foundation for understanding the basic principles of emergency 
facility location, and they can be useful for situations where uncertainty is minimal. However, 
in real-world emergency situations, there are often significant uncertainties in demand, travel 
times, and capacities. As a result, probabilistic and robust models have gained popularity, as 
they can better handle uncertainty and provide more reliable solutions. 

Probabilistic models are valuable for addressing stochastic variations in the problem 
parameters, which can lead to more realistic and adaptable solutions. Robust models, on the 
other hand, focus on worst-case scenarios, ensuring that the system is resilient even when 
facing unforeseen events or extreme conditions. 

Dynamic models are particularly relevant in emergency facility location problems, as they take 
into account the time-varying nature of demand, travel times, and capacities. By incorporating 
temporal information, these models can provide more accurate solutions that adapt to changing 
conditions and needs. 

In summary, selecting the appropriate emergency facility location model is a crucial step in 
ensuring an effective emergency response system. By understanding the strengths and 
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limitations of each model, decision-makers can choose the most suitable approach for their 
specific problem and ensure that emergency facilities are optimally located to maximize 
coverage, minimize response times, and improve overall system performance. Moreover, by 
combining these models with the optimization algorithms discussed in section 2.2, researchers 
and practitioners can develop advanced methodologies for addressing the complex and 
dynamic nature of emergency facility location. 

2.2. Optimization Algorithms 

In this section, we provide an extended discussion of the four primary categories of 
optimization algorithms used for solving emergency facility location models: exact algorithms, 
metaheuristic algorithms, hybrid algorithms, and machine learning-based algorithms. These 
algorithms are essential in finding optimal or near-optimal solutions for the models discussed 
in sections 2.1. 

Table 2  Taxonomy of optimization algorithms 

Primary categories Optimization algorithms References 

Exact algorithms 

Branch and bound 
Hamadi and Naffeti 

(2023) 

Branch and cut Zhang et al. (2022) 

Dynamic programming Mauricio et al. (2023) 

Metaheuristic 
algorithms 

Genetic algorithms 
Chromik and Arnrich 

(2021) 

Simulated annealing Nahavandi et al. (2022) 

Particle swarm optimization Zhu et al. (2020) 

Ant colony optimization 
Mavrovouniotis et al. 

(2020) 

Hybrid algorithms 

Genetic algorithm with local search Wang et al. (2022) 

Simulated annealing with constraint 
programming 

Kizilay (2022) 

Particle swarm optimization with 
dynamic programming 

Bilal et al. (2020) 

Machine learning-based 
algorithms 

Reinforcement learning Li et al. (2021) 

Neural networks 
RamachandranPillai 

and Arock (2020) 

Supervised learning for solution 
construction 

Elola et al. (2016) 

Unsupervised learning for clustering Han et al. (2023) 

 

2.2.1. Exact Algorithms 

Exact algorithms guarantee optimal solutions for facility location problems by exploring the 
entire solution space. These algorithms are generally computationally expensive, and their 
applicability may be limited to small- and medium-sized problems. Some widely-used exact 
algorithms include: 

Branch and Bound[21-25]: This algorithm systematically divides the solution space into 
smaller subproblems and computes bounds on the optimal solution. Subproblems with bounds 
that cannot lead to better solutions are discarded, reducing the search space. 
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Branch and Cut[26,27]: This algorithm extends the branch and bound method by incorporating 
cutting planes, which are linear inequalities that remove non-optimal solutions from the search 
space, thus accelerating the convergence to the optimal solution. 

Dynamic Programming[28,29]: This algorithm solves a problem by dividing it into smaller 
overlapping subproblems and combining their solutions in a systematic manner. The algorithm 
is particularly suitable for problems with optimal substructure and overlapping subproblems. 

2.2.2. Metaheuristic Algorithms 

Metaheuristic algorithms are approximate optimization methods that search for near-optimal 
solutions within a reasonable computational time. These algorithms can be applied to large-
scale and complex problems and are often inspired by natural phenomena. Some popular 
metaheuristic algorithms include: 

Genetic Algorithms[30-40]: These algorithms are inspired by the process of natural selection 
and evolution. They use a population of candidate solutions that evolve over time through 
mutation, crossover, and selection operations. 

Simulated Annealing[41-46]: This algorithm is inspired by the annealing process in metallurgy. 
It uses a stochastic search that accepts worse solutions with a decreasing probability as the 
search progresses, allowing the algorithm to escape local optima. 

Particle Swarm Optimization[47-50]: This algorithm is inspired by the social behavior of bird 
flocks or fish schools. It uses a population of particles that move through the search space and 
adapt their positions based on their own best experiences and the best experiences of their 
neighbors. 

Ant Colony Optimization[51-53]: This algorithm is inspired by the foraging behavior of ants. It 
uses a population of artificial ants that build solutions incrementally by following pheromone 
trails, which represent the quality of the solutions. 

2.2.3. Hybrid Algorithms 

Hybrid algorithms combine elements from exact algorithms, metaheuristic algorithms, or other 
optimization methods to exploit the advantages of each method and improve overall 
performance. These algorithms can provide high-quality solutions with reduced computational 
time. Examples of hybrid algorithms include: 

Genetic Algorithm with Local Search[54,55]: This hybrid algorithm incorporates local search 
methods, such as hill climbing or tabu search, within a genetic algorithm to improve the quality 
of the solutions generated by the genetic operators. 

Simulated Annealing with Constraint Programming[56]: This hybrid algorithm combines the 
stochastic search capabilities of simulated annealing with the constraint propagation 
techniques of constraint programming, allowing for more efficient exploration of the search 
space. 

Particle Swarm Optimization with Dynamic Programming[57]: This hybrid algorithm 
integrates the global search capabilities of particle swarm optimization with the efficient 
solution construction techniques of dynamic programming, aiming to balance exploration and 
exploitation in the search process. 

2.2.4. Machine Learning-based Algorithms 

Machine learning-based algorithms use data-driven approaches to optimize facility location 
problems. These algorithms can learn from historical data, adapt to changes in the problem 
parameters, and provide real-time solutions. Examples of machine learning-based algorithms 
include: 

Reinforcement Learning[58,59]: This algorithm learns an optimal decision-making policy by 
interacting with the environment and receiving feedback in the form of rewards or penalties. It 
can be applied to facility location problems by modeling the decision-making process as a 
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Markov Decision Process (MDP) and iteratively updating the policy based on the observed 
outcomes. 

Neural Networks[60,61]: These algorithms consist of interconnected layers of artificial neurons 
that can learn complex relationships between input and output data. They can be used to 
predict travel times, demands, or other problem parameters, and can be incorporated into 
optimization algorithms to improve their performance. 

Supervised Learning for Solution Construction[62]: In this approach, machine learning 
algorithms, such as Support Vector Machines (SVMs) or Decision Trees, are used to learn 
patterns in historical solutions of facility location problems. These patterns can then be used to 
guide the construction of new solutions or to improve the performance of other optimization 
algorithms. 

Unsupervised Learning for Clustering[63,64]: In this approach, unsupervised learning 
algorithms, such as K-means or Hierarchical Clustering, are used to group demand points or 
facilities based on their spatial or temporal characteristics. These clusters can then be used as 
input for other optimization algorithms. 

In conclusion, the choice of optimization algorithms for solving emergency facility location 
problems depends on various factors, such as problem size, complexity, and the desired 
solution quality. Combining different optimization algorithms or incorporating machine 
learning techniques can lead to more efficient and effective solutions that cater to the dynamic 
and uncertain nature of emergency situations. 

3. Recommendations for Future Research Directions and Applications 

In this section, we provide an extended discussion of recommendations for future research 
directions and applications in the field of highway emergency facility locating. 

Table 4  Recommendations for future research directions and applications 

Future research directions and 
applications 

Recommendations 

Application of advanced 
optimization techniques 

Exploring the use of machine learning-based 
optimization algorithms 

Investigating the potential of quantum computing 

Developing hybrid optimization algorithms 

Emerging technologies and data 
availability 

Developing dynamic and adaptive optimization models 

Designing algorithms and decision support systems 

Evaluating the benefits of incorporating real-time data 
and dynamic decision-making 

Development of robust and 
resilient models 

Formulating stochastic and robust optimization models 

Investigating the trade-offs between solution robustness 

Designing adaptive algorithms 

Implementation in intelligent 
transportation systems 

Developing ITS frameworks 

Investigating the interactions between emergency 
response planning and other ITS components 

Designing adaptive algorithms 
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3.1. Application of Advanced Optimization Techniques 

Applying advanced optimization techniques to emergency facility location problems can lead 
to more efficient and effective solutions. Future research directions include: 

Exploring the use of machine learning-based optimization algorithms, such as reinforcement 
learning and deep learning, to improve solution quality and computational efficiency. 

Investigating the potential of quantum computing for solving large-scale and complex 
emergency facility location problems. 

Developing hybrid optimization algorithms that combine the strengths of exact, heuristic, and 
metaheuristic methods to enhance solution quality and computational efficiency. 

3.2. Incorporation of Real-time Data and Dynamic Decision Making 

Incorporating real-time data into optimization models and enabling dynamic decision-making 
can improve emergency response performance in rapidly changing situations. Future research 
can focus on: 

Developing dynamic and adaptive optimization models that leverage real-time data from traffic 
sensors, social media, and crowdsourcing platforms to update facility location decisions. 

Designing algorithms and decision support systems that can process large volumes of real-time 
data, provide timely updates to emergency response plans, and support dynamic decision-
making. 

Evaluating the benefits of incorporating real-time data and dynamic decision-making in 
emergency response scenarios, including improved response times, coverage, and adaptability 
to changing conditions. 

3.3. Development of Robust and Resilient Models 

Developing robust and resilient optimization models that can handle uncertainty and provide 
reliable solutions is essential for effective emergency response planning. Future research 
directions include: 

Formulating stochastic and robust optimization models that account for various sources of 
uncertainty, such as demand, travel times, and resource availability. 

Investigating the trade-offs between solution robustness, solution quality, and computational 
efficiency in emergency facility location problems. 

Designing adaptive algorithms that can update solutions in real-time based on new information 
and assess the performance of these methods under different levels of uncertainty and risk. 

3.4. Implementation in Intelligent Transportation Systems 

Integrating emergency facility location models and algorithms into intelligent transportation 
systems (ITS) can enhance emergency response performance and overall transportation 
system resilience. Future research can focus on: 

Developing ITS frameworks that incorporate optimization models and algorithms for 
emergency facility location, leveraging emerging technologies such as connected and 
autonomous vehicles, drones, and the Internet of Things (IoT). 

Investigating the interactions between emergency response planning and other ITS 
components, such as traffic management, information dissemination, and incident 
management. 

Conducting real-world case studies and pilot projects to evaluate the benefits of implementing 
optimization models and algorithms in ITS, including improved emergency response 
performance, system resilience, and cost-effectiveness. 
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By addressing these future research directions and applications, the field of highway 
emergency facility locating can continue to advance, leading to more efficient, effective, and 
resilient emergency response systems. 

4. Conclusion 

In this review paper, we have provided an extensive overview of the state-of-the-art models, 
algorithms, and methods in the field of highway emergency facility locating. We have discussed 
the various types of emergency facility location models, as well as the optimization algorithms 
used to solve them. We have also provided recommendations for future research directions and 
applications, such as the development of integrated models, application of advanced 
optimization techniques, incorporation of real-time data and dynamic decision making, 
development of robust and resilient models, and implementation in intelligent transportation 
systems. 
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