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Abstract 

Optimization model is a NP hard problem. This paper designs a heuristic algorithm for 
the solution of the model based on the improved differential evolution algorithm. Aiming 
at the shortcomings of traditional differential evolution algorithm, such as easy to fall 
into local optimum, this paper adjusts the fixed scaling factor F and probability crossover 
factor CR into adaptive parameters. Then, the results of the improved algorithm are 
compared and analyzed to prove the feasibility of the improved algorithm. 
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1. Introduction 

Differential evolution (DE) is a stochastic heuristic algorithm first proposed by storn R and 
price k in 1995 to solve Chebyshev polynomial problems 

SADE proposed in reference [1] improves the convergence rate of solving unconstrained 
optimization problems. References [2, 4] improve the scaling factor F and crossover probability 
factor Cr in de algorithm, but they do not use these improved de algorithms to solve bilevel 
programming problems. Reference [3] used De to solve bilevel programming problem, but did 
not improve its mutation strategy (De / current-to-rand / 1), nor did it optimize the parameters 
of the algorithm. In this paper, after adaptive improvement of scaling factor F and probability 
crossover factor Cr, the improved DE algorithm is used to solve the nonlinear integer bilevel 
programming problem of oilfield development planning. 

2.  Improved differential evolution algorithm 

In the traditional DE algorithm, population size NP, scaling factor F and crossover probability 
factor CR will affect the convergence speed and accuracy of the algorithm. So in the specific 
problem, the three parameters should be selected. 

2.1. Population size NP 

In solving optimization problems, we must first set up the population size, and the population 
size of different problems is different, neither too large nor too small. If the population size is 
too large, the convergence speed will be greatly reduced, which will affect the performance of 
the algorithm. If the population size is too small, it will improve the convergence speed, but the 
diversity of the population is difficult to guarantee, and it is easy to fall into the local minimum, 
and the satisfactory results cannot be obtained. Many literatures show that the population 
selection is generally 5-10 times of the dimension of independent variable. For different 
problems, the population size suitable for the problem is selected. In special problems, if the 
result precision is pursued, the dimension should be more than 10 times, if the convergence 
speed is pursued, the dimension is less than 5 times, but the population size cannot be less than 
4, otherwise, the mutation operation cannot be performed (because the random selection is 
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conducted in the mutation operation Three individuals, population size less than 4, is not 
random selection). 

2.2. Scaling factor F. 

The scaling factor F is a multiple of the difference between two random individuals in mutation 
operation, and it is an important factor to determine the richness of population diversity and 
the convergence speed of the algorithm. Many experiments show that the value range of F is 
[0,2], generally 0.5. When the value of F is large, it can be seen from figure 2-2 that the variation 
results in the feasible region change greatly, and the population diversity increases, which can 
effectively avoid the algorithm falling into local minimum, but the convergence speed will be 
affected. On the contrary, when f value is small, the range of mutation results in the feasible 
region becomes smaller, and the diversity of population is weakened, which makes the 
algorithm fall into local minimum and the result is premature. Therefore, it is necessary to 
choose different values of F for specific optimization problems. Experience shows that the value 
range of F is [0,1]. When the problem of multi peak is encountered, it is suggested to increase 
the value of F and NP in order to get the global optimal solution. 

2.3. Cross probability factor CR. 

The crossover probability factor (CR) controls the proportion of individuals produced by 
crossover operation in their parents, which is similar to gene mutation in genetics. Many 
experiments show that the value range of F is [0,1]. When Cr is small, the proportion of parent 
individuals is large, the mutation point is less, the convergence speed will be faster, but the 
diversity of the population can not be guaranteed, and it is easy to fall into local minimum; on 
the contrary, it is conducive to maintaining the diversity of the population and global search, 
and the result is generally the global optimal solution. Among the three parameters, the scaling 
factor f has the most obvious influence on the convergence speed and accuracy of the algorithm. 
In many references [1-4], the improvement of F is also in many aspects, and the basic idea of 
this paper is that when the iteration starts, the F is adjusted to a large extent, which can increase 
the population diversity and avoid premature. When iterating to the middle and late stage, the 
F is adjusted smaller to improve the convergence speed, so that in the whole optimization 
process, the convergence speed and accuracy of the algorithm are guaranteed. The 
improvement idea of Cr is similar to that of F, which will not be repeated here. 

In reference [5], the author changed the mutation operation to. 

, , 1, , , , ,( ) ( )i t i t r t i t best i t i t pbest i tV W X K X X F X X                      (1) 

Among them, 1,r tX  is the randomly generated individual, ,best tX  is the contemporary optimal 

individual in the iterative process, and ,pbesti tX  is the historical optimal individual in the 

iterative process, including all basic individuals ( )iX  , variant individuals ,i tK , and 

experimental individuals ,i tF . 

In equation (1) ,i tW , ,i tK and ,i tF  are the control parameters of mutation operation, which are 

improved to adaptive form by the author. In equation (2), the form of ,i tW , ,i tK and ,i tF  are 

described, and the adaptive form of CR is also described. 
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   (2) 

In the above formula 0 0.1w  , min 0.2w  , max 0.9w  , min 0.3F  , max 0.9F  , min 0.1CR  , max 0.9CR  , 

i is the number of iterations, NP is the population size, ,best tf  is the best individual and ,worst tf  is 

the worst individual. 

3. Comparison and analysis of the results of general examples of the 
improved algorithm 

In order to test the performance of the improved adaptive scaling factor F and crossover 
probability factor Cr in the improved algorithm, the performance comparison experiments are 
carried out on nine test functions by combining the classification strategy de / RAND / 1 and 
SDE. The number of trials was 300 and the population size was 200. Table 5 shows the value 
ranges and theoretical optimal solutions of nine commonly used test functions and independent 
variables. 

Table 1 Standard function test set 
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The test results are shown in Table 2, which includes the average and standard deviation of the 
optimal solution of each function under different algorithms. After comparison, the better 
results are shown in bold as follows. 

Table 2  The average value and standard deviation of the optimal solution for 300 
independent operation 

Function 
Dimension Improved adaptation 

DE 
SDE DE/rand/1 

1f  

Mean value 30 1.38E-13 133.9584 1.09E-12 

Standard 
deviation 

30 8.72592E-13 2806.806843 6.3112E-12 

2f  

Mean value 30 6.6E-15 2459.44 1.25E-11 

Standard 
deviation 

30 1.08E-15 58197.86 7.48E-11 

3f  

Mean value 30 2.23E-15 0.705818 3.06E-15 

Standard 
deviation 

30 3.65E-14 10.68658 1.87E-14 

4f  

Mean value 30 0.037425 192551.4 0.134981 

Standard 
deviation 

30 0.474 4973300 0.819638 

5f  

Mean value 30 0.0262 1568657 0.301222 

Standard 
deviation 

30 0.1464217 25273214 1.759191 

6f  

Mean value 30 2.58E-02 5548.68 38.12193333 

Standard 
deviation 

30 2.59E-02 17923.72376 43.51966 

7f  

Mean value 30 6.25084E-12 0.159524 6.29E-13 

Standard 
deviation 

30 1.21447E-12 0.312 1.17E-12 
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8f  

Mean value 30 1.6844 2.794893 1.6844 

Standard 
deviation 

30 0 3.080693 0 

9f  

Mean value 30 6.19E-02 103.5647 83.8317 

Standard 
deviation 

30 6.27E-02 143.5713 84.06448 

4. Summary 

It is not difficult to find from table 2 that compared with the other two algorithms, the average 
and standard deviation of the optimal solution of most functions of the improved differential 
evolution algorithm are smaller than those of other algorithms. In addition to the function 

3f

and
7f , de / RAND / 1 itself is easy to fall into local minimum, while the improved algorithm can 

effectively improve the population diversity and avoid local minimum in numerical 
experiments. 
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